Device Applications of Metal-2D-Materials Interfaces A Short Review

Faisal Ahmad, Amir Mansoori, Sonia Bansal, Th. S. Dhahi, Shamim Ahmad


The electronic energy band gaps of 2D-materials are known to spread over a wide range from zero in graphene to > 6eV in hexagonal boron nitride (h-BN). Various combinations of such engineered nanomaterials offer a number of novel device applications involving their unique optical, electronic, and thermal properties along with their higher charge carrier mobilities and saturation limited drift velocities. Structurally, these nanomaterials have single or multiple monolayers stuck together, which are not only suitable for flexible electron devices and circuits but also in preparing heterostructures (lateral as well as vertical configurations) that form super lattices with different kinds of band alignments. Such possibilities offer flexible control over the charge carrier transport in these materials via numerous types of exciton formations. Their extra sensitivity towards the presence of atomic, molecular and nanoparticulate species in their vicinity is the most significant aspect of these 2D-materials. This is the reason behind studying them in detail for detecting the presence of extremely low concentrations of the analyte that are not achievable in conventional sensors. For translating the above-said superlative properties of these fast emerging families of 2-D nanomaterials into usable devices and circuits, applying the conventional device fabrication technologies poses a real challenge. The experimental results reported in the context of forming usable interfaces between a metal and 2D-nanomaterial are examined here to assess their current status and future prospects. Their widespread applications are certainly anticipated in the fields like printed micro/nano sensors, large area electronics and printed intelligence with special reference to their emerging usages in Internet of Things (IoT) in the near future. 


2D-Semiconductors; 2D-FET Structures; Edge Contacts; Fermi Level Pinning; Metal-Semiconductor Contacts; Planar Contacts; Schottky Barrier Heights

Full Text:



S. Ahmad, Micro and Millimeter Wave Semiconductor Device Technology. Tata McGraw Hill, Delhi, India, 1998.

A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors,” Nature Materials, vol. 14, pp. 1195-1205, 2015.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photo detectors based on monolayer MoS2,” Nature Nanotech., vol. 8, pp. 497–501, 2013.

D. Krasnozhon, D. Lembke, C. Nyffeler, Y. Leblebici, and A. Kis, “MoS2 transistors operating at gigahertz frequencies,” Nano Lett., vol. 14, pp. 5905-11, 2014.

S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, (2013), “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett., vol. 13, pp. 100–105, 2013.

H. Liu, A. T. Neal, and P. D. Ye, “Channel length scaling of MoS2 MOSFETs,” ACS Nano., vol. 6, pp. 8563-9, 2012.

H. Liu, M. Si, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, “Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films,” Nano Lett., vol. 13, pp. 2640–6, 2013.

R. Landauer, “Spatial variation of currents and fields due to localized scatterers in metallic conduction,” IBM J. Res. Dev. vol.1, pp. 223–231, 1957.

Y. V. Sharvin, “A possible method for studying Fermi surfaces,” Sov. Phys. JETP, vol. 21, pp. 655-6, 1965.

D. Jena, K. Banerjee, and G. H. Xing, “2D crystal semiconductors: Intimate contacts,” Nature Mater., vol. 13, pp. 1076-8, 2014.

G. T. Wright, “Small-signal theory of the transistor transit-time oscillator /translator/,” Solid-State Electronics, vol. 22(4), pp. 399-403, 1979.

S. M. Sze, Physics of Semiconductor Devices, Wiley-Inter science, 1969.

J. Bardeen, “Surface States and Rectification at a Metal Semi-Conductor Contact,” Phys. Rev. vol. 71, 717, 1947.

Y. Xu, C. Cheng, S. Du, J. Yang, Bin Yu, J. Luo, W. Yin, E. Li, S. Dong, P. Ye, and X. Duan, “Contacts between Two and Three-Dimensional Materials: Ohmic, Schottky, and p-n Hetero junctions,” ACS Nano, vol. 10 (5), pp. 4895-919, 2016.

S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High-Performance Multilayer MoS2 Transistors with Scandium Contacts,” Nano Lett., 13 (1), pp. 100–105, 2013.

Y. Zhao, X. Xiao, Y. Huo, Y. Wang, T. Zhang, K. Jiang, J. Wang, S. Fan, and Q. Li, “Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode,” ACS Appl. Mater. Interfaces, vol. 9 (22), pp.18945-55, 2017.

K. S. Kim, K. H. Kim, Y. Nam, J. Jeon, S. Yim, E. Singh, J. Y. Lee, S. J. Lee, Y. S. Jung, G. Y. Yeom, and D. W. Kim, “Atomic layer etching mechanism of MoS2 for nano devices,” ACS Appl. Mater. Interfaces, vol. 9 (13), pp. 11967-76, 2017.

S. Roy, G. P. Neupane, K. P. Dhakal, J. Lee, S. J. Yun, G. H. Han, and J. Kim, “Observation of Charge transfer in heterostructures composed of MoSe2 quantum dots and a monolayer of MoS2 or WSe2,” J. Phys. Chem. C, vol. 121 (3), pp. 1997–2004, 2017.

M.-H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, “Charge transport in MoS2/WSe2 van der Waals hetero-structure with tunable inversion layer,” ACS Nano, vol. 11 (4), pp. 3832-40, 2017.

J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, (2017), Interlayer exciton optoelectronics in a 2D hetero structure p–n Junction,” Nano Lett., vol. 17 (2), pp. 638-43, 2017.

K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, and J. He, “Sub-10nm nano pattern architecture for 2D material field-effect transistors,” Nano Lett., vol. 17 (2), pp. 1065–70, 2017.

C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, and W. J. Yoo, “Fermi level pinning at electrical metal contacts of monolayer Molybdenum Dichalcogenides,” ACS Nano, vol.11 (2), pp.1588-96, 2017.

J. Guan, H.-J. Chuang, Z. Zhou, and D. Tománek, “Optimizing charge injection across transition metal di-chalcogenide heterojunctions: Theory and Experiment,” ACS Nano, vol. 11 (4), pp. 3904-10, 2017.

C. Zheng, Q. Zhang, B. Weber, H. Ilatikhameneh, F. Chen, H. Sahasrabudhe, R. Rahman, S. Li, Z. Chen, J. Hellerstedt, Y. Zhang, W. H. Duan, Q. Bao, and M. S. Fuhrer, “Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures,” ACS Nano, vol. 11 (3), pp. 2785–93, 2017.

D. Stradi, N. R. Papior, O. Hansen, and M. Brandbyge, “Field Effect in graphene-based van der Waals heterostructures: Stacking sequence matters,” Nano Lett., vol. 17 (4), pp. 2660–6, 2017.

R. Li, L. Zhang, L. Shi, and P. Wang, “MXene Ti3C2: An effective 2D light-to-heat conversion material,” ACS Nano, vol. 11 (4), pp. 3752–9, 2017.

H. Lin, X. Wang, L. Yu, Y. Chen, and J. Shi, “Two-dimensional ultrathin MXene ceramic nanosheets for photo-thermal conversion,” Nano Lett., vol. 17 (1), pp. 384-91, 2017.

L. Huang, B. Li, M. Zhong, Z. Wei, and J. Li, “Tunable Schottky barrier at MoSe2/Metal interfaces with a buffer layer,” J. Phys. Chem. C, vol. 121 (17), pp. 9305–11, 2017.

Y. Yoon, K. Ganapathi, and S. Salahuddin, “How good can monolayer MoS2 transistors be?” Nano Lett., vol. 11 (9), pp. 3768–73, 2011.

H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, “Integrated circuits based on bilayer MoS2 transistors,” Nano Lett., vol. 12 (9), pp. 4674–80, 2012.

S. Sattar and U. Schwingenschlögl, “Electronic properties of graphene–PtSe2 contacts,” ACS Appl. Mater. Interfaces, vol. 9 (18), pp.15809-13, 2017.

H. G. Kim, and H.-B.-R. Lee, “Atomic layer deposition on 2D materials,” Chem. Mater., vol. 29(9), pp. 3809-26, 2017.

A. Nourbakhsh, A. Zubair, R. N. Sajjad, A. Tavakkoli K. G. W. Chen, S. Fang, X. Ling, J. Kong, M. S. Dresselhaus, E. Kaxiras, K. K. Berggren, D. Antoniadis, and T. Palacios, “MoS2 field-effect transistor with sub-10nm channel length,” Nano Lett. vol. 16 (12), pp. 7798–7806, 2016.

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. L. Thong, “Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes,” ACS Nano, vol. 9 (1), pp. 869-77, 2015.

H.-J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors,” Nano Lett., vol. 16 (3), pp. 1896–1902, 2016.

Y. Kim, A. R. Kim, J. H. Yang, K. E. Chang, J.-D. Kwon, S. Y. Choi, J. Park, K. E. Lee, D.-H. Kim, S. M. Choi, K. H. Lee, B. H. Lee, M. G. Hahm, and B. Cho, “Alloyed 2D metal–semiconductor heterojunctions: Origin of interface states reduction and Schottky barrier Lowering,” Nano Lett., vol. 16 (9), pp. 5928–33, 2016.

Y. Sata, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “N and P-type carrier injections into WSe2 with van der Waals contacts of two-dimensional materials,” Jap. J. App. Phys., vol. 56, 04CK09, 2017.

D. Kufer, and G. Konstantatos, “Photo-FETs: Phototransistors enabled by 2D and 0D Nanomaterials,” ACS Photonics, vol. 3 (12), pp. 2197–2210, 2016.

H. Zhong, R. Quhe, Y. Wang, Z. Ni, M. Ye, Z. Song, Y. Pan, J. Yang, L. Yang, M. Lei, J. Shi, and J. Lu, “Interfacial properties of monolayer and bilayer MoS2 contacts with metals: Beyond the energy band calculations,” Scientific Rep. 6:21786, 2016. DOI: 10.1038/ srep21786

C. P. Y. Wong, C. Troadec, K. E. J. Goh, and A. T. S. Wee, “A study of the metal/2D semiconductor contacts,” 2017. Text @ /Calvin % 20Wong_Poster%20-%20ISRF%20 2015. pdf

A. Bin Khudhayr, 2017, Text @ Engineering%20and%20Management/EEE%20 and%20Management/Developing%20of%20Lowresistance%20Ohmic%20Contact%20on%20GaN % 20 HEMTs.pdf

D. Taneja, F. Sfigakis, A. F. Croxall, K. Das Gupta, V. Narayan, J. Waldie, I. Farrer, and D. A. Ritchie, “N-type ohmic contacts to undoped GaAs/AlGaAs quantum wells using only front-sided processing: application to ambipolar FETs,” Semicond. Sci. Technol., vol. 31, 065013 (7pp), 2016.

P. Parikh, Y. Wu, and L. Shen, “Commercialization of high 600V GaN-on-silicon power HEMTs and diodes. IEEE Energytech., pp. 21-23, May 2013; DOI: 10.1109/EnergyTech. 2013.6645300

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science, vol. 342, pp. 614-7, 2013.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett., vol. 101, 026803, 2008.

Q. Tang, C. X. Zhang, C. He, C. Tang, and J. Zhong, “Charge transport properties of graphene: Effects of Cu-based gate electrode,” J. Appl. Phys., vol.108, 123711, 2010.

F. Léonard, and A. A. Talin, “Electrical contacts to one- and two-dimensional nanomaterials,” Nat. Nanotechnol., vol. 6, pp.773-83, 2011.

F. Xia, V. Perebeinos, Y. M. Lin, Y. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 6, 179-84, 2011.

M. S. Choi, S. H. Lee, and W. J. Yoo, “Plasma treatments to improve metal contacts in graphene field effect transistor,” J. Appl. Phys., vol. 110, 073305, 2011.

D. Berdebes, T. Low, Y. Sui, J. Appenzeller, and M. S. Lundstrom, “Substrate gating of contact resistance in graphene transistors,” IEEE Trans. Electron. Dev., vol. 58, pp. 3925-32, 2011.

J. S. Moon, M. Antcliffe, H. C. Seo, D. Curtis, S. Lin, A. Schmitz, I. Milosavljevic, A. A. Kiselev, R. S. Ross, D. K. Gaskill, P. M. Campbell, R. C. Fitch, K.-M. Lee, and P. Asbeck, “Ultra-low resistance ohmic contacts in graphene field effect transistors,” Appl. Phys. Lett. vol.100, 203512, 2012.

J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano vol. 7, pp. 3661–7, 2013.

A. K. Geim, and I. V. Grigorieva, “van der Waals heterostructures,” Nature vol. 499, pp. 419-25, 2013.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett., vol. 11, pp. 2396–9, 2011.

M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, “Atomic structure of graphene on SiO2,” Nano Lett., vol.7, pp. 1643–1648, 2007.

J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, and D. Snyder, “Contacting graphene,” Appl. Phys. Lett., vol. 98, 053103, 2011.

J. Yamaguchi, K. Hayashi, S. Sato, and N. Yokoyama, “Passivating chemical vapor deposited graphene with metal oxides for transfer and transistor fabrication processes,” Appl. Phys. Lett., vol. 102, 143505, 2013.

N. Lindvall, A. Kalabukhov, and A. Yurgens, “Erratum: “Cleaning graphene using atomic force microscope,” [J. Appl. Phys., vol. 111, 064904, 2012], J. Appl. Phys. vol. 111, 064904, 2012.

S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and R. Gorbachev, “Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices,” Nat. Mater., vol. 11, pp. 764-7, 2012.

Y. Matsuda, W.-Q. Deng, And W. A. Goddard Iii, “Contact Resistance for “End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics,” J. Phys. Chem. C, Vol. 114, Pp. 17845–50, 2010.

K. Cho, “First-Principles and Quantum Transport Studies of Metal–Graphene End Contacts,” Mrs Proc., Vol., 1259, Pp. S14–S35, 2010.

Y. Wu, Y. Wang, J. Wang, M. Zhou, A. Zhang, C. Zhang, Y. Yang, Y. Hua, and B. Xu, “Electrical transport across metal-two-dimensional carbon junctions: edge versus side contacts,” AIP Adv., vol. 2(1), 012132, 2012.

M. H. D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie, C.-J. Kim, D. A. Muller, D. C. Ralph, J. Park, “Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials,” Acs Nano., Vol. 10 (6), Pp. 6392–9, 2016.

Y. Wen, L. Yin, P. He, Z. Wang, X. K. Zhang, Q. Wang, T. A. Shifa, K. Xu, F. Wang, X. Zhan, F. Wang, C. Jiang, And J. He, “Integrated High-Performance Infrared Phototransistor Arrays Composed of Non-Layered Pbs–Mos2 Heterostructures with Edge Contacts,” Nano Lett., Vol. 16 (10), Pp. 6437–6444, 2016.

T. Chu and Z. Chen, “Understanding The Electrical Impact of Edge Contacts in Few-Layer Graphene,” Acs Nano, Vol. 8 (4), Pp. 3584-9, 2014.

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, And J. T. L. Thong, “Low-Resistance Metal Contacts to Mos2 Devices with Nickel-Etched-Graphene Electrodes,” Acs Nano, Vol. 9 (1), Pp. 869–877, 2015.

C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, And E. Pop, “Improved Contacts to Mos2 Transistors by Ultra-High Vacuum Metal Deposition,” Nano Lett., Vol. 16 (6), Pp. 3824-30, 2016.

H. -J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors,” Nano Lett., vol. 16 (3), pp. 1896–1902, 2016.

X. Cui, E.-M. Shih, L. A. Jauregui, S. H. Chae, Y. D. Kim, B. Li, D. Seo, K. Pistunova, J. Yin, J.-H. Park, H.-J. Choi, Y. H. Lee, K. Watanabe, T. Taniguchi, P. Kim, C. R. Dean, and J. C. Hone, “Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes,” Nano Lett., vol. 17 (8), pp. 4781–6, 2017.

A. Avsar, J. Y. Tan, X. Luo, K. H. Khoo, Y. Yeo, K. Watanabe, T. Taniguchi, S. Y. Quek, and B. Özyilmaz, “van der Waals bonded Co/h-BN contacts to ultrathin black phosphorus devices,” Nano Lett., vol. 17 (9), pp. 5361–7, 2017.

H.-J. Kwon, W. Choi, D. Lee, Y. Lee, J. Kwon, B. Yoo, C. P. Grigoropoulos, and S. Kim, “Selective and localized laser-anneal effect for high-performance flexible multilayer MoS2 thin-film transistors,” Nano Res., vol. 7, 1137, 2014.

Y. Liu, H. Xiao, and W. A. Goddard, “Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes,” J. Am. Chem. Soc., vol. 138 (49), pp. 15853-6, 2016.

T. Hu, Z. Li, M. Hu, J. Wang, Q. Hu, Q. Li, and X. Wang, “Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study,” J. Phys. Chem. C, vol. 121 (35), pp. 19254-61, 2017.

Y. Wang, M. Ye, M. Weng, J. Li, X. Zhang, H. Zhang, Y. Guo, Y. Pan, L. Xiao, J. Liu, F. Pan, and J. Lu, “Electrical contacts in monolayer arsenene devices,” ACS Appl. Mater. Interfaces, vol. 9 (34), pp. 29273–84, 2017.

Y. Guo, W. A. Saidi, and Q. Wang, “2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation,” 2D Materials, vol. 4(3), 035009, 2017.

Y. Ma, A. Kuc, Y. Jing, P. Philipsen, and T. Heine, “Two-dimensional haeckelite NbS2: A diamagnetic high-mobility semiconductor with Nb4+ ions,” Angew. Chem. Int. Ed., vol. 56, 10214, 2017.

X. Zhang, Y. Pan, M. Ye, R. Quhe, Y. Wang, Y. Guo, H. Zhang, Y. Dan, Z. Song, J. Li, J. Yang, W. Guo, and J. Lu, “Three-layer phosphorene-metal interfaces,” Nano Res., 2017; 1007/s12274-017-1680-6

H. A. Tahini, X. Tan, and S. C. Smith, “The origin of low work functions in OH-terminated MXenes,” Nanoscale, vol. 9, pp. 7016-20, 2017.

E. Balc, U. O. Akkuş, and S. Berber, “Band gap modification in doped MXene: Sc2CF2,” J. Mater. Chem. C, vol. 5, pp. 5956-61, 2017.

J. H. Sung, H. Heo, S. Si, Y. H. Kim, H. R. Noh, K. Song, J. Kim, C.-S. Lee, S.-Y. Seo, D.-H. Kim, H. K. Kim, H. W. Yeom, T.-H. Kim, S.-Y. Choi, J. S. Kim, and M.-H. Jo, “Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy,” Nature Nanotechnology, 2017; doi:10.1038/nnano.2017.161

Y. Matsuda, W.-Q. Deng, and W. A. Goddard III, “Contact resistance for “end-contacted” metal−graphene and metal−nanotube interfaces from quantum mechanics,” J. Phys. Chem. C, vol. 114 (41), 17845–50, 2010.

K. H. Khoo, W. S. Leong, J. T. L. Thong, and S. Y. Quek, “Origin of contact resistance at ferromagnetic metal–graphene interfaces,” ACS Nano, vol. 10 (12), pp. 11219–27, 2016.

M. Shaygan, M. Otto, A. A. Sagade, C. A. Chavarin, G. Bacher, W. Mertin, and D. Neumaier, “Low resistive edge contacts to CVD-grown graphene using a CMOS compatible metal,” Annalen der Physik, 1600410, 2017.

Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu, J. Luo, W. Yin, E. Li, S. Dong, P. Ye, and X. Duan, “Contacts between two and three-dimensional materials: Ohmic, Schottky, and p–n - heterojunctions,” ACS Nano, vol. 10 (5), pp. 4895-919, 2016.

Y. Kim, A. R. Kim, J. H. Yang, K. E. Chang, J.-D. Kwon, S. Y. Choi, J. Park, K. E. Lee, D.-H. Kim, S. M. Choi, K. H. Lee, B. H. Lee, M. G. Hahm, and B. Cho, “Alloyed 2D-metal–semiconductor heterojunctions: Origin of interface states reduction and Schottky barrier lowering,” Nano Lett., vol. 16 (9), pp. 5928–33, 2016.

2-D Electronics' metal or semiconductor? Both, Researchers produced the first 2D field-effect transistor (FET) made of a single material, Science News, September, 2017, Text @ /2017/09/ 170918161531. Htm

J. H. Sung, H. Heo, S. Si, Y. H. Kim, H. R. Noh, K. Song, J. Kim, C.-S. Lee, S.-Y. Seo, D.-H. Kim, H. K. Kim, H. W. Yeom, T.-H. Kim, S.-Y. Choi, J. S. Kim, and M.-H. Jo, “Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy,” Nature Nanotechnology, 2017; DOI: 10.1038/NNANO.2017.161.



  • There are currently no refbacks.

Copyright (c) 2018 Shamim Ahmad