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Abstract — This paper presents an inventory model for 

imperfect quality items with receiving a reparative batch and 

order overlapping in a fuzzy environment by employing fuzzy 

triangular numbers. It is assumed that the imperfect items 

identified by Screening are divided into either scrap or 

reworkable items. The reworkable items are kept in store until 

the next items are received. Afterward, the items are returned 

to the supplier to be reworked. Also, a discount on the 

purchasing cost is employed as an offer of cooperation from a 

supplier to a buyer to compensate for all additional holding 

costs incurred to the buyer. The rework process is error-free. 

An overlapping order scheme is employed so that the vendor is 

allowed to use the previous shipment to meet the demand by 

the inspection period. In the fuzzy model, the graded mean 

integration method is taken to defuzzify the model and 

determine its approximation of a profit function and optimal 

policy. In doing so, numerical examples are rendered to 

represent the model behavior, and, eventually, the sensitivity 

analysis is presented. 

 
Index Terms — Inventory, Imperfect quality, Order 

overlapping, Graded mean integration, Triangular fuzzy 

number, Screening. 

 

I. INTRODUCTION 

The importance of inventory management systems is 

growing every day, and many researchers are trying to solve 

management problems using mathematical models. The 

economic order quantity (EOQ) model is the basis of 

advanced inventory systems. By exploring the literature 

review on inventory systems, it is realized that many efforts 

have been conducted to provide inventory models in order to 

eliminate the limitations of the EOQ model. One of the 

assumptions in the EOQ models is that all the received items 

are perfect. However, this assumption is not comprehensive 

for several reasons, including the faulty production process, 

failure in the process of transportation, etc.  So, the effect of 

imperfect items on inventory systems has become one of the 

interesting topics for many researchers to provide more 

practical models. [1] followed by Rosenblatt and Lee, 

presented the significant connection between imperfect 

quality and lot sizing. [2] assumed that the imperfect items 

received in the lot would result in the inspection cost. In 

addition, [3] studied an EOQ model with the effect of a joint 

lot sizing and Screening, in which the imperfect items were 

random variables. Further, [4] investigated an economic 
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production quantity model for defective items with a known 

probability distribution. Therefore, they assumed that, by the 

end of the inspection time, the imperfect items were sold as 

a single batch. In the same year, they did not deviate from 

the main idea, but pointed out and rectified an existing error 

in the model, which was devised by Salameh and Jaber. 

After that, a simple method was proposed by [5] to find the 

optimum value of production quantity for the model given 

by Salameh and Jaber. Subsequently, [6] examined the 

imperfect inventory model, given that the imperfect items 

were random variables. [7] extended the inventory model 

presented by Salameh and Jaber, while considering the 

effect of error in the screening procedure.  

[8] further presented an EOQ inventory model 

considering imperfect quality items. In the same year, [9] 

suggested an inventory model, in which lot-sizing, defective 

items, quality control were combined. [10] formulated a new 

imperfect production inventory model, in which the 

imperfect items were randomly produced. Currently, [11] 

considered the effect of imperfect items and deterioration. It 

should be noted that, in all the above-mentioned models, no 

shortage has been assumed during the inspection process, 

which was based on the model by Salameh and Jaber. Since 

in several successive inspection processes, defective items 

may have been found to cause a shortage, the supposed 

assumption could not be correct. This fault was discussed by 

[12], who concluded that the simple formula could not be 

found to prevent the occurrence of shortage during the 

inspection process. Luckily, [13] developed a pragmatic 

method to overcome this fault. This method, called "an 

overlapping order scheme," let the vendor use the previous 

order to meet the demand during the inspection process. 

This new approach can effectively prevent the occurrence of 

shortage during the inspection process. Therefore, this idea 

was incorporated into our model. 

Another unrealistic assumption considered in the above 

models was that imperfect goods could just be sold at their 

salvage value and could not be reworked. However, many 

researchers have discovered this fault and incorporated the 

idea of reworking a part of imperfect items into their 

models. [14] studied an EOQ model, in which a part of 

defective items could be used as good items.[15] and many 

other researchers have also investigated the effect of the 

reworked process on the inventory models. It should be 

noted that the above inventory models consider that the 

reworkable items are sent back to be reworked and returned 

as the perfect items through the same period; however, in 

our model, we assumed that reworkable items were kept in 

the buyer's warehouse until the next shipment arrived. Then, 

the supplier replaced the reworkable items with the perfect 

ones and sent them within the next order before the current 
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lot was used up. In the present paper, it was assumed that 

the following lot was received from the supplier as a 

"reparative batch." Also, in the previous papers, it was 

assumed that the perfect item holding costs and scrap item 

holding costs were the same. However, [16], [17] presented 

an imperfect EOQ inventory model with different holding 

costs and learning in the inspection. 

In all the above models, researchers have only considered 

all the parameters and variables as crisp values. Although 

crisp models offer an overview of the approach of inventory 

systems under various assumptions, they are not able to 

provide factual terms. As a result, exerting crisp models, in 

general, can lead to errors in decision-making. Moreover, in 

crisp models, inventory managers must be flexible in 

determining the economic lot size to cause uncertainty cost 

reduction. Furthermore, the use of fuzzy systems for solving 

inventory problems, rather than using probability systems, 

generates more appropriate solutions. Fuzzy sets introduced 

the attention of many researchers in inventory management 

topics. 

[18] developed a fuzzy scheduling inventory model 

considering a constraint in warehouse capacity. [19] 

presented an EOQ model for interpreting a fuzzy set theory. 

[20] developed an EOQ inventory model considering the 

backorder as a triangular fuzzy number. [21] provided an 

inventory model without backorder, considering the fuzzy 

storing cost defuzzified by centroid and signed distances 

also proposed an imperfect inventory model considering the 

fuzzy annual demand and fuzzy imperfect rate. [22] studied 

a fuzzy EOQ inventory model with two-phase trade credits 

for deteriorating items in the fuzzy sense. Since then, [23], 

[24] has made significant contributions to controllable lead-

time literature. [25] fuzzified lead time components and 

studied the effect of flexibility in lead time on the 

distributors. [26] investigated an EPQ model without any 

shortages by fuzzifying the decision variable and cycle time 

and proposed the EOQ model considering fuzzy triangular 

numbers for the demand and lead time. 

As it is obvious from the above-mentioned literature, 

none of the authors has presented an imperfect EOQ 

inventory model, either scrap or re-workable, along with 

receiving reparative batch considering various holding costs 

for perfect and scrap items under fuzzy conditions in the 

model parameters. Therefore, we tried to eliminate the gap 

in the literature. In this paper, scrap items were being sold 

for salvage value by the end of the inspection period. Upon 

the completion of the screening process, the buyer notifies 

the supplier of the number of reworkable items; however, 

unlike some of the previous articles, here, it is assumed that 

reworkable items are stored in the buyer's warehouse until 

the next shipment arrives. Then, the supplier replaces the 

reworkable items with the perfect ones and sends them 

within the next order before the current lot is exhausted. 

Totally, the major distinction between this paper and others 

lies in fuzziness in the model parameter, the various 

assumptions on imperfect items, employing an overlapping 

scheme to prevent shortages during the inspection period, 

discount rate provision of the purchasing cost to maintain a 

cooperative relationship, and considering receiving 

reparative.  

The structure of this paper is as follows. The problem 

statement is given in the second section. Next, the 

mathematical model is presented. Afterward, numerical 

examples and sensitivity analysis are given. Finally, the 

conclusion section is provided. 

 

II. PROBLEM STATEMENT 

In this section, the problem is introduced with more 

details. An imperfect EOQ inventory model is presented. All 

the items received on a shipment are required to be 

inspected. The imperfect items that are identified through 

Screening are divided into either scrap or reworkable items. 

By the end of the inspection period, the scrap items are sold 

at a price of salvage value. Then, the buyer declares the 

number of reworkable items; however, unlike some of the 

previous articles in which reworkable items are assumed to 

be sent back to the supplier and returned as the perfect items 

through the same period, the proposed model is assumed 

that reworkable items are kept in a buyer's warehouse until 

the next shipment arrives. Then, the supplier replaces the 

reworkable items with the perfect ones and sends them 

within the next order before the current lot is exhausted. By 

doing so, the supplier's costs (e.g., transportation costs) are 

reduced and, instead, the buyer's costs (e.g., holding costs) 

are raised. As a result, a coordinated policy should be 

employed so that economic benefits can be provided for 

both the buyer and the supplier. Discount on purchase costs 

can be used as an offer of cooperation from supplier to 

buyer (i.e., the discount compensates for all additional 

holding costs incurred to the buyer). Moreover, to eliminate 

shortages within the inspection period, an "overlapping 

scheme" is employed: similar to Maddah et al.'s (2010) idea 

that lets the buyer supply his/her needs from the previous 

order during the inspection process. Also, it is assumed that 

the holding costs for scrap items and perfect items are not 

the same. Besides, the input parameter D is considered a 

triangular fuzzy number and applies a graded mean 

integration method as a defuzzification method to obtain the 

optimum values. In addition, [27], [28] stated that demand is 

stochastically distributed in its nature in most industries. 

The following are the assumptions considered in this 

paper: 

• Item demand is constant over time. 

• The input parameter D is the triangular fuzzy number. 

• A graded mean integration method is applied as 

defuzzification so that the optimum value of the profit 

function in the fuzzy case could be found. 

• Shortages are not allowed. 

• The holding cost for reworkable items is different from 

and higher than the holding cost for scrap items. 

• A discount on the purchasing cost is applied to make 

up for the extra holding cost belonging to the buyer. 

• An overlapping order scheme is incorporated into the 

model.  

• The demand and screening processes proceed 

concurrently, but the Reworking process is error-free. 
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III. MATHEMATICAL MODELING 

𝐷̃: Demand per year, nonnegative triangular fuzzy number 

with parameter (q, r, s) 

𝑥: Inspection rate 

𝐴: Ordering cost per cycle 

𝑟𝑠: The percentage rate of scrap items (random variable) 

𝑟𝑤: The percentage rate of reworkable items (random 

variable) 

𝑓(𝑟𝑠): 𝑟𝑠 Probability density function 

𝑓(𝑟𝑤): 𝑟𝑤 Probability density function 

𝑠: Selling value per unit 

𝑤: Salvage value per unit 

𝑑: Unit inspection cost 

ℎ𝑤: Reworkable or perfect item holding cost rates per unit 

per cycle  

ℎ𝑠: Scrap item holding cost rate per unit per cycle  

𝛼: Discount rate for procurement cost  

𝑐: Purchasing cost per unit 

𝑡1: Screening length per cycle 

𝑇: Length of cycle 

𝐻𝑠(𝑄): Scrap item holding cost per cycle 

𝐻𝑤(𝑄): Perfect or reworkable item holding costs per cycle 

𝑇𝑃(𝑄): Total profit per cycle 

𝑇𝑃𝑈(𝑄): Net profit per unit time 

𝑄: Order size per cycle (decision variable) 

Considering that the demand rate D is a fuzzy number; 

however, other components of the model are all crisp 

constant. We represent the demand rate by a triangular fuzzy 

number as given below: 

 

𝐷̃ = (𝑞, 𝑟, 𝑠) (1) 

 

And the membership function is as follows: 

 

𝜇𝐷̃(𝑥) =

{
 
 

 
 
𝑥 − 𝑞

𝑟 − 𝑞
       𝑖𝑓𝑞 ≤ 𝑥 ≤ 𝑟

𝑠 − 𝑥

𝑥 − 𝑟
       𝑖𝑓𝑟 ≤ 𝑥 ≤ 𝑠

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2) 

 

Fig. 1 presents the behavior of the proposed model per 

cycle. The 100% inspection process is finished at the time 

𝑡1. To avoid shortages, the overlapping scheme is used, and 

it is supposed that the demand by the screening time is at 

least the same as the number of perfect quality items. It 

means that, for 0 ≤ 𝑡 ≤ 𝑡1: 

 

𝑥𝑡1(1 − 𝑟𝑠 − 𝑟𝑤) ≥ 𝐷̃𝑡1 (3) 

 

which yields: 

𝑥 ≥
𝐷̃

(1 − 𝑟𝑠 − 𝑟𝑤)
 (4) 

 

The goal is to obtain Q that maximizes the total profit per 

year, 𝑇𝑃(𝑄), expressed by:  

 

𝑇𝑃(𝑄) = 𝑇𝑅(𝑄) − 𝑇𝐶(𝑄) (5) 

 

where 𝑇𝑅(𝑄) denotes the revenue per cycle, and 𝑇𝐶(𝑄) 
denotes the total cost per cycle. 𝑇𝑅(𝑄) is obtained through 

the sale of good items and scrap items, i.e.: 

 

𝑇𝑅(𝑄) = 𝑠𝑄(1 − 𝑟𝑠) + 𝜔𝑄𝑟𝑠 (6) 

 

𝑇𝐶(𝑄) includes the following four costs: 

 

𝑇𝐶(𝑄) = 𝑂𝐶 + 𝑆𝐶 + 𝑃𝐶 + 𝐻𝐶 (7) 

 

where 𝐶 denotes the ordering cost per cycle (𝑂𝐶 = 𝐴), 𝑆𝐶 

denotes the screening cost per cycle (𝑆𝐶 = 𝑑𝑄), 𝑃𝐶denotes 

the purchasing cost per cycle (𝑃𝐶 = 𝑐𝑄(1 − 𝛼)), and 𝐻𝐶 

denotes the holding cost per cycle, which includes the scrap 

item holding cost per cycle, 𝐻𝑠(𝑄), and reworkable or 

perfect item holding cost per cycle, 𝐻𝑤(𝑄). 𝐻𝑠(𝑄) can be 

obviously calculated using Fig. 1, as shown in the shaded 

area: 

 

𝐻𝑠(𝑄) = ℎ𝑠 (
𝑄2𝑟𝑠
2𝑥

) (8) 

 

To compute 𝐻𝑤(𝑄), the total inventory quantity per cycle 

should be calculated. According to Fig. 1, it is clear that the 

sum of the areas of ∆ZBC, ∆BGR, GIJR, and ∆RJF minus 

∆DEF can express the total inventory quantity per cycle. 

The area of ∆ZBC is the same as that of ∆DEF; therefore, 

we have: 

 

𝑉̃ =
𝑄2𝑟𝑠
2𝑥⏟
△𝐵𝐺𝑅

+
𝑄2(1 − 𝑟𝑠)

𝑥⏟      
□𝐺𝐼𝐽𝑅

+
(𝑄(1 − 𝑟𝑠))

2

2𝐷̃⏟        
△𝑅𝐽𝐹

 (9) 

 

Hence, the holding cost 𝐻̃𝑤(𝑄) is as follows: 

 

𝐻𝑤(𝑄) = ℎ𝑤 × 𝑉 = ℎ𝑤 (
𝑄2𝑟𝑠

2𝑥
+
𝑄2(1−𝑟𝑠)

𝑥
+
(𝑄(1−𝑟𝑠))

2

2𝐷̃
)  (10) 

 

Thus: 

 

𝑇𝐶̃(𝑄) = 𝐴 + 𝑑𝑄 + 𝑐𝑄 (1 −
𝑟𝑤𝑄

𝐷̃
) + ℎ𝑠 (

𝑄2𝑟𝑠

2𝑥
) +

ℎ𝑤 (
𝑄2𝑟𝑠

2𝑥
+
𝑄2(1−𝑟𝑠)

𝑥
+
(𝑄(1−𝑟𝑠))

2

2𝐷̃
)  

(11) 

 
Fig. 1. Inventory model. 

 

Through items simplification, the expression for a total 

cost per cycle can be calculated by: 

 

𝑇𝐶̃(𝑄) = 𝐴 + 𝑑𝑄 + 𝑐𝑄 (1 −
𝑟𝑤𝑄

𝐷̃
) + (ℎ𝑠 +

ℎ𝑤) (
𝑄2𝑟𝑠

2𝑥
) + ℎ𝑤 (

𝑄2(1−𝑟𝑠)

𝑥
) + ℎ𝑤 (

(𝑄(1−𝑟𝑠))
2

2𝐷̃
)  

(12) 
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By substituting Eqs. (12) and (6) in Eq. (5), the total 

profit per cycle is obtained by: 

 

𝑇𝑃̃(𝑄) = 𝑠𝑄(1 − 𝑟𝑠) + 𝜔𝑄𝑟𝑠 − 𝐴 − 𝑑𝑄 − 𝑐𝑄(1 −
𝑟𝑤𝑄

𝐷̃
) − (ℎ𝑠 + ℎ𝑤)(

𝑄2𝑟𝑠

2𝑥
) − ℎ𝑤 (

𝑄2(1−𝑟𝑠)

𝑥
) −

ℎ𝑤 (
(𝑄(1−𝑟𝑠))

2

2𝐷̃
)  

(13) 

 

Furthermore, it is considered that the expected value of 

𝑇𝑃̃(𝑄) (i.e., 𝐸[𝑇𝑃̃(𝑄)]) is calculated, in which the expected 

values (𝐸[1 − 𝑟𝑠], 𝐸[𝑟𝑠], and 𝐸[𝑟𝑤]) are used instead of 1 −
𝑟𝑠, 𝑟𝑠, and 𝑟𝑤, respectively. The expected net profit per unit 

time is calculated by applying the renewal reward theorem 

(Ross, 1996) (i.e., dividing 𝑇𝑃̃(𝑄) by the cycle length, 𝑇̃ =
(1−𝑟𝑆)𝑄

𝐷̃
) as follows: 

 

𝐸[𝑇𝑃̃𝑈(𝑄)] =

𝐷̃(𝑠(1−𝐸(𝑟𝑠))+𝜔𝐸(𝑟𝑠)−𝑐(
1−𝐸(𝑟𝑤)𝑄

𝐷̃
)−𝑑)−(

𝐴𝐷̃

𝑄
)

1−𝐸(𝑟𝑠)
−

𝑄

2(1−𝐸(𝑟𝑠))
(
𝐷̃(2ℎ𝑤−ℎ𝑤𝐸(𝑟𝑠)+ℎ𝑠𝐸(𝑟𝑠))

𝑥
+ ℎ𝑤(𝐸(1 − 𝑟𝑠)

2))  

(14) 

 

Now, we consider: 

 

𝑢 =
1

1−𝐸(𝑟𝑠)
{𝑠(1 − 𝐸(𝑟𝑠)) + 𝜔𝐸(𝑟𝑠) − 𝑐 − 𝑑 −

𝐴

𝑄
} 

𝑊 =
𝑄

2(1−𝐸(𝑟𝑠))
{
(2ℎ𝑤−ℎ𝑤𝐸(𝑟𝑠)+ℎ𝑠𝐸(𝑟𝑠))

𝑥
}  

𝑋 =
ℎ𝑤(𝐸(1−𝑟𝑠)

2)

2(1−𝐸(𝑟𝑠))
  

(15) 

 

Hence, by substituting Eq. (15) in Eq. (14), the annual 

fuzzy net profit function is illustrated by: 

 

𝐸(𝑇̃𝑃𝑈(𝑄)) = 𝐷̃(𝑢) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝐷̃(𝑊) − 𝑄(𝑋)  (16) 

 

Therefore, the annual fuzzy net profit function is 

illustrated by a nonnegative triangular fuzzy number as 

follows: 

 

𝐸(𝑇̃𝑃𝑈(𝑄)) = (𝑎1, 𝑏1, 𝑐1) (17) 

 

where 𝑎1, 𝑏1, 𝑐1 can be obtained below. According to Eq. 

(16), we have: 

 

𝐸 (𝑇̃𝑃𝑈(𝑄)) −
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 + 𝑄(𝑋) = 𝐷̃(𝑢 −𝑊)  

⇒ 𝐷̃ =
𝐸(𝑇̃𝑃𝑈(𝑄))−(

𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
)𝑄+𝑄(𝑋)

𝑢−𝑊
  

(18) 

 

Using Eqs. (18) and (17), we have: 

 

for𝐷̃ ≤ 𝑎 ⇒
𝐸(𝑇̃𝑃𝑈(𝑄))−(

𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
)𝑄+𝑄(𝑋)

𝑢−𝑊
≤ 𝑎  

⇒ 𝐸(𝑇̃𝑃𝑈(𝑄)) ≤ 𝑎(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)

⏟                  
𝑎1

  
(19) 

⇒ 𝑎(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)

⏟                  
𝑎1

≤ 𝐸(𝑇̃𝑃𝑈(𝑄)) ≤
(20) 

𝑏(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)

⏟                  
𝑏1

  

for𝑏 ≤ 𝐷̃ ≤ 𝑐 ⇒ 𝑏 ≤
𝐸(𝑇̃𝑃𝑈(𝑄))−(

𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
)𝑄+𝑄(𝑋)

𝑢−𝑊
≤ 𝑐  

⇒ 𝑏(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)

⏟                  
𝑏1

≤ 𝐸(𝑇̃𝑃𝑈(𝑄)) ≤

𝑐(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)

⏟                  
𝑐1

  
(21) 

 

Thus, 𝐸(𝑇̃𝑃𝑈(𝑄)) is a triangular fuzzy number with three 

points (𝑎1, 𝑏1, 𝑐1) as follows: 

 

𝐸(𝑇̃𝑃𝑈(𝑄)) =

{
 
 

 
 𝑎1 = 𝑎(𝑢 −𝑊) +

𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)

𝑏1 = 𝑏(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)

𝑐1 = 𝑐(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)

  
(22) 

 

𝐸(𝑇̃𝑃𝑈(𝑄)) is deffuzified by employing the graded mean 

integration method as follows: 

 

𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) =
1

6
(𝑎1 + 4𝑏1 + 𝑐1) =

1

6

(

 
 
 

{𝑎(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)} +

4 {𝑏(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)} +

{𝑐(𝑢 −𝑊) +
𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
𝑄 − 𝑄(𝑋)}

)

 
 
 

  
(23) 

 

The target is to maximize 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))). Because 

𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) is concave at 𝑄,
𝜕2𝐸(𝑇̃𝑃𝑈(𝑄))

𝜕2𝑄
=

−2𝐴𝐷̃

𝑄3(1−𝐸(𝑟𝑠))
<

0, then the optimum lot size 𝑄∗can be calculated by 

differentiating 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) With respect to Q and 

setting, the partial derivatives are equal to zero. 

 
𝜕𝑃(𝐸(𝑇̃𝑃𝑈(𝑄)))

𝜕𝑄
=

1

6
(𝑎 + 4𝑏 + 𝑐)(

𝜕𝑢

𝜕𝑄
−
𝜕𝑊

𝜕𝑄
) +

𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
−

𝑋 = 0  
(24) 

𝜕𝑢

𝜕𝑄
=

𝜕

𝜕𝑄
(
{𝑠(1−𝐸(𝑟𝑠))+𝜔𝐸(𝑟𝑠)−𝑐−𝑑−

𝐴

𝑄
}

1−𝐸(𝑟𝑠)
) =

𝐴

𝑄2
×

1

1−𝐸(𝑟𝑠)
  

𝜕𝑊

𝜕𝑄
=

𝜕

𝜕𝑄
(
𝑄{
(2ℎ𝑤−ℎ𝑤𝐸(𝑟𝑠)+ℎ𝑠𝐸(𝑟𝑠))

𝑥
}

2(1−𝐸(𝑟𝑠))
) =

(2ℎ𝑤−ℎ𝑤𝐸(𝑟𝑠)+ℎ𝑠𝐸(𝑟𝑠))

𝑥

2(1−𝐸(𝑟𝑠))
  

(25) 

 

Hence, substituting Eq. (25) in Eq. (24): 

 
1

6
(𝑎 + 4𝑏 + 𝑐) + (

𝐴

𝑄2

1

1−𝐸(𝑟𝑠)
−
2ℎ𝑤−ℎ𝑤𝐸(𝑟𝑠)+ℎ𝑠𝐸(𝑟𝑠)

2𝑥(1−𝐸(𝑟𝑠))
) +

𝑐𝐸(𝑟𝑤)

1−𝐸(𝑟𝑠)
−

ℎ𝑤(𝐸(1−𝑟𝑠)
2)

2(1−𝐸(𝑟𝑠))
= 0  

(26) 

 

By simplifying Eq. (26), Eq. (27) can be obtained by: 

 
𝐴

𝑄2
=

−6𝑐𝐸(𝑟𝑤)

(𝑎+4𝑏+𝑐)
+
3ℎ𝑤(𝐸(1−𝑟𝑠)

2)

(𝑎+4𝑏+𝑐)
+ (27) 



    EJERS, European Journal of Engineering Research and Science 

Vol. 5, No. 10, October 2020 

 

DOI: http://dx.doi.org/10.24018/ejers.2020.5.10.2184                                                                                                                                                      Vol 5 | Issue 10 | October 2020 5 
 

{
(2ℎ𝑤−ℎ𝑤𝐸(𝑟𝑠)+ℎ𝑠𝐸(𝑟𝑠))

𝑥
}(𝑎+4𝑏+𝑐)

2(𝑎+4𝑏+𝑐)
  

𝑄∗ =

√
2𝐴(𝑎+4𝑏+𝑐)

(𝑎+4𝑏+𝑐){
(2ℎ𝑤−ℎ𝑤𝐸(𝑟𝑠)+ℎ𝑠𝐸(𝑟𝑠))

𝑥
}−12𝑐𝐸(𝑟𝑤)+6ℎ𝑤(𝐸(1−𝑟𝑠)

2)
  (28) 

 

The optimum annual total profit 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) is 

obtained by the direct substitution of Eq. (28) in Eq. (23). 

Note that, when the input parameter D is a real number, that 

is a=b=c=D, when the screening rate is large enough, that is 

the inspection process is finished simultaneously by the 

receiving an order, and finally, when items are categorized 

as only perfect or imperfect (no reworkable items so that no 

discount on purchasing cost), 𝑄∗ in Eq. (28) is equivalent to: 

 

𝑄∗ = √
2𝐴𝐷

ℎ𝑤(𝐸(1 − 𝑟𝑠)
2)

 (29) 

 

It shows that the proposed model is accurate. In addition, 

it should be noted that, when the input parameter D is a real 

number, that is a=b=c=D, and if all items are assumed to be 

perfect, our model becomes equivalent to the EOQ 

inventory model. 

 

IV. NUMERICAL STUDY 

In this section, the behavior of our model is investigated 

by applying numerical examples, and the impact of applying 

a fuzzy case into the model is also investigated. Assume the 

following values and the input parameters for an inventory 

model in the crisp case: A = 100 $ per cycle, D = 50,000 per 

unit per year, x  = 175200 per year per unit, hw = 5$ per year 

per unit, s = 50$ per unit, d  = 0.5$ per unit, w = 20 per unit, 

hs = 2$ per year per unit, c = 25$ per unit. Also, 𝐸(𝑟𝑠) =

0.02𝐸(𝑟𝑤) = 0.05𝐸[(1 − 𝑟𝑠)
2] = 0.9605  

The optimum lot size 𝑄∗and the optimal annual total 

profit 𝐸[𝑇𝑃𝑈(𝑄)]
 

of a crisp case, in which 

a=b=c=D=50000, can be derived easily from Eqs. (28) and 

(23), respectively. It is obtained that 𝑄∗ =

1395𝐸[𝑇𝑃𝑈(𝑄)]∗ = 1212072. Some fuzzy triangular 

numbers are assigned for the input parameter 𝐷̃ in Table 1 to 

illustrate the fuzzy model developed in Section 3. Then, by 

using the GMI method, the defuzzified values are specified. 

The defuzzified values and the corresponding percentage 

difference from the crisp values (denoted by 𝑝𝐷 for the 

component 𝐷̃) are also shown in Table 1. For each set of 

triangular fuzzy numbers, the optimal lot size 𝑄∗and the 

optimal annual total profit 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) are derived from 

Eqs. (28) and (23). The findings are summarized in Table 2. 

This table represents variations in 𝑄∗and annual net profit 

𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄)))due to fuzziness in parameter D., It shows 

that the optimal values for the expected net profit are fully 

sensitive to increasing percentage changes in parameter D's 

fuzziness level, while optimal order quantities are 

comparatively insensitive to increase percentage changes in 

parameter D's fuzziness. Note that the percentage changes in 

the expected net profit are almost the same as the percentage 

changes of parameter D at different levels, whereas the lot 

size order quantity changes marginally. Besides, a one-way 

sensitivity analysis is conducted to determine the impact of 

other problem parameters on 𝑄∗and 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))). In the 

numerical examples, the value of one parameter is changed 

at a time, while the values of the others are not changed. 

Table 3 shows the values used in the sensitivity analysis for 

different problem parameters. Then, the optimal order 

quantity and the annual total net profit are calculated using 

the values shown in Table 3. The corresponding values are 

presented in Table 4.  
 

TABLE I: TRIANGULAR FUZZY NUMBERS FOR THE PARAMETER D ̃ 

𝐷̃ 𝑝(𝐷̃)  𝑝𝐷 

(5,000; 34,250; 68,000) 35,000 -30 

(12,000; 37,500; 78,000) 40,000 -20 

(20,000; 45,000; 70,000) 45,000 -10 

(29,000;52,000; 93,000) 55,000 10 

(42,000;61,000; 94,000) 60,000 20 

(33,000; 61,500;111,000) 65,000 30 

 

TABLE II: %CHANGE IN OPTIMUM VALUES FROM THE CRISP  

𝑄∗ 
% change 

in Q* 
𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 

% change in 

𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄)))
 

1277.64 -8 848731.233 -30 

1322.81 -5 970116.010 -20 

1361.45 -2 1091503.127 -10 

1424.23 2 1334281.969 10 

1465.76 5 1536600.692 27 

1473.15 6 1577064.666 30 

 
TABLE III: EXPERIMENTAL VALUES FOR THE EXAMPLE  

Parameter Base value Experimental values 

𝑥 175200 87600 175200 262800 

ℎ𝑤 5 2.5 5 10 

ℎ𝑠 2 1 2 4 

𝐴 100 50 100 200 

𝑑 0.5 0.25 0.5 1 

𝑠 50 25 50 100 

𝑐 25 12.5 25 50 

𝑤 20 10 20 40 

𝐸(𝑟𝑠) 0.02 0.01 0.02 0.03 

𝐸(𝑟𝑤) 0.05 0.025 0.05 0.075 

 
TABLE IV: ORDER QUANTITY AND EXPECTED NET PROFIT PER UNIT  

𝑥 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) ℎ𝑤 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 

87600 

175200 

262800 

1119.7 

1394.9 

1544.2 

1210274.6 

1212072 

1212779.7 

2.5 

5 

10 

2746.9 

1394.9 

885 

1215672.9 

1212072 

1207858 

𝑨 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 𝑑 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 

50 

100 

200 

986.4 

1394.9 

1972 

1214215.1 

1212072 

1209042.5 

0.25 

0.5 

1 

1394.9 

1394.9 

1394.9 

1224827.6 

1212072 

1186562.3 

ℎ𝑠 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 𝑠 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 

1 

2 

4 

1395.7 

1394.9 

1393.4 

212076.6 

1212072 

1212064.4 

25 

50 

100 

1394.9 

1394.9 

1394.9 

-37927.4 

1212072 

3712072.5 

𝒄 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 𝑤 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 

12.5 

25 

50 

1251.1 

1394.9 

1946.5 

1848986.5 

1212072 

-61364.6 

10 

20 

40 

1394.9 

1394.9 

1394.9 

1201868.5 

1212072 

1232480.7 

𝐸(𝑟𝑤) 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 𝐸(𝑟𝑠) 𝑄 𝑃 (𝐸(𝑇̃𝑃𝑈(𝑄))) 

0.025 

0.05 

0.075 

1251.1 

1394.9 

1603.5 

121123.3 

1212072 

1213024 

0.01 

0.02 

0.03 

1393.8 

1394.9 

1396.1 

1214974.9 

1212072 

1209110.4 
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Figs. 2 and 3 display a tornado diagram as a graphical 

result of the sensitivity analysis. These represent how the 

order quantity and the annual total net profit are changing, 

while the model parameters are independently varying from 

their low value to the high ones. The length of each bar in 

the diagram shows the extent to which the optimal order 

quantity and the annual net profit are sensitive to the bar's 

corresponding model parameter. It can be observed from 

Fig. 2 that the model's parameters with the greatest impact 

on the optimum order size are ℎ𝑤. As other parameters have 

their base values, the perfect or reworkable item holding 

cost rate per cycle is differing from 2.5 to 10, while the 

value of the order quantity changes from 2746.9 to 885. This 

finding shows that a larger amount of ℎ𝑤can highly affect 

the order quantity. Moreover, it can be observed from Fig. 3 

that the model's parameters with the greatest impact on the 

annual net profit are the unit screening cost. As other 

parameters have their base values, when 𝑑 varied from 0.25 

to 1, the value of the annual net profit changes from 

1224827 to 1186562. As a result, the values of these 

parameters should be carefully estimated because they have 

the most significant impact on the model's cost. 

 

 
Fig. 2. Tornado diagram for the order quantity. 

 

 
Fig. 3. Tornado diagram for the total annual profit. 

 

V. CONCLUSION 

As it is known, the input parameters of the EOQ 

inventory problem cannot be described precisely in a real 

situation, or it may be uncertain because of some 

uncontrolled factors. Therefore, approximate solution 

approaches have been represented for the explanation of a 

series of practical inventory problems. Fuzzy methodologies 

provide a helpful approach to model ambiguity in human 

recognition and decision-making. Uncertainties defined by 

imprecise factors can be illustrated by fuzzy sets. Thus, in 

the current paper, our goal is to propose the fuzzy inventory 

model with defective items considering reparative batch and 

order are overlapping. In this model, the input parameter (D) 

is considered the fuzzy number to defuzzify the proposed 

model and determine the approximation of annual profit in 

the fuzzy sense, and we apply the graded mean integration 

method. Then, the optimal order quantity is calculated to 

maximize the total profit. The model is solved for triangular 

fuzzy numbers. It is shown that the EOQ model, as well as 

the general models, are just some special cases of our 

model. In so doing, numerical examples are rendered to 

represent the model behavior, and then the results of the 

crisp and fuzzy models are compared with each other. It 

should be noted that the optimal values of the annual net 

profit are quite sensitive to increasing percentage changes in 

the parameter D's fuzziness level, while an optimal order 

quantity is comparatively insensitive to increase percentage 

changes in the parameter D's fuzziness level. The percentage 

change in the annual net profit is almost the same as the 

percentage change in the fuzziness level, while the order 

size changes slightly. A one-way sensitivity analysis is 

presented to assess the effect of other problem parameters 

on the order quantity and annual total net profit and to 

display the sensitivity analysis results graphically as a 

tornado diagram. To increase the scope of our analysis, the 

model presented in this paper can be extended in several 

ways. For example, it can be incorporated with deteriorating 

items.  
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