Ocean Energy - A Clean Energy Source

##plugins.themes.bootstrap3.article.main##

  •   Phuoc Quy Phong Nguyen

  •   Van Huong Dong

Abstract

The world is constantly seeking new sources of energy to replace the use of coal and fossil fuels to generate electricity. And a strong source of energy from the ocean is one of the hopes of scientists around the world. Ocean energy is an endless renewable energy source for making electricity used for the world. Marine technology was once considered too expensive to be a viable source of alternative clean energy, especially compared to already developed products such as wind and solar. However, with the increased price of oil and the issues of global warming and national security, U.S. coastal sites are looking to add ocean energy to their renewable energy portfolios. This paper gives an overview of ocean energy technologies, focusing on two different types: wave, tidal. It outlines the operating principles, the status, and the efficiency and cost of generating energy associated with each technology.


Keywords: Renewable Energy Ocean energy, Wave Energy, Tidal energy

References

A. T. Hoang and V. V Le, “Marine pollution and remedies of Vietnamese Government,” Int. J. Recent Eng. Res. Dev, vol. 2, no. 4, pp. 51–55, 2017.

A. T. Hoang and V. V. Pham, “A review on fuels used for marine diesel engines,” J. Mech. Eng. Res. Dev. Res. Dev., vol. 41, no. 4, pp. 54–64, 2018.

V. V. Le and A. T. Hoang, “Fuel and alternative fuel for marine diesel engines,” Int. J. Recent Eng. Res. Dev., vol. 2, no. 7, pp. 142–146, 2017.

A. T. Hoang and A. T. Le, “A review on deposit formation in the injector of diesel engines running on biodiesel,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 41, no. 05, pp. 584–599, 2018.

A. T. Hoang, Q. V. Tran, and X. D. Pham, “Performance and Emission Characteristics of Popular 4-Stroke Motorcycle Engine in Vietnam Fuelled with Biogasoline Compared with Fossil Gasoline,” Int. J. Mech. Mechatronics Eng., vol. 18, no. 02, pp. 97–103, 2018.

A. T. Hoang and V. T. Nguyen, “Emission Characteristics of a Diesel Engine Fuelled with Preheated Vegetable Oil and Biodiesel,” Philipp. J. Sci., vol. 146, no. 4, pp. 475–482, 2017.

A. T. Hoang and V. V. Pham, “A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 41, no. 05, pp. 611–625, 2018.

H. Anh Tuan and C. Minh Quang, “A mini review of using oleophilic skimmers for oil spill recovery,” J. Mech. Eng. Res. Dev., vol. 41, no. 2, pp. 92–96, 2018.

A. T. Hoang and X. D. Pham, “An investigation of remediation and recovery of oil spill and toxic heavy metal from maritime pollution by a new absorbent material,” J. Mar. Eng. Technol., 2018. https://doi.org/10.1080/20464177.2018.1544401.

A. T. Hoang, “A report of the oil spill recovery and treatment technologies to reduce the marine environment pollution,” Int. J. e-Navigation Marit. Econ., vol. 9, pp. 35–49, 2018.

T. N. Le, M. K. Pham, A. T. Hoang, T. N. M. Bui, and D. N. Nguyen, “Microstructure Change For Multi-Pass Welding Between Austenitic Stainless Steel And Carbon Steel,” J. Mech. Eng. Res. Dev., vol. 41, no. 2, pp. 97–102, 2018.

M. K. Pham, D. N. Nguyen, and A. T. Hoang, “Influence of Vanadium Content on the Microstructure and Mechanical Properties of High-Manganese Steel,” Int. J. Mech. Mechatronics Eng., vol. 18, no. 2, pp. 141–147, 2018.

M. T. Miglin, J. P. Hirth, A. R. Rosenfield, and W. A. T. Clark, “Microstructure of a quenched and tempered Cu-bearing high-strength low-alloy steel,” Metall. Trans. A, vol. 17, no. 5, pp. 791–798, 1986.

T. N. Le, M. K. Pham, A. T. Hoang, and D. N. Nguyen, “Microstructures and elements distribution in the transition zone of carbon steel and stainless steel welds,” J. Mech. Eng. Res. Dev., vol. 41, no. 3, pp. 27–31, 2018.

L. G. Korshunov, I. I. Kositsina, V. V Sagaradze, and N. L. Chernenko, “Effect of the carbide phase on the tribological properties of high-manganese antiferromagnetic austenitic steels alloyed with vanadium and molybdenum,” Phys. Met. Metallogr., vol. 112, no. 1, p. 90, 2011.

X. D. Pham, A. T. Hoang, and D. N. Nguyen, “A Study on the Effect of the Change of Tempering Temperature on the Microstructure Transformation of Cu-Ni-Sn Alloy,” Int. J. Mech. Mechatronics Eng., vol. 18, no. 4, pp. 27–34, 2018.

X. D. Pham, A. T. Hoang, D. N. Nguyen, and V. V Le, “Effect of Factors on the Hydrogen Composition in the Carburizing Process,” Int. J. Appl. Eng. Res., vol. 12, no. 19, pp. 8238–8244, 2017.

D. N. Nguyen, A. T. Hoang, M. T. Sai, M. Q. Chau, and V. V. Pham, “Effect of Sn component on properties and microstructure Cu-Ni-Sn alloys,” J. Teknol., vol. 80, no. 6, pp. 43–51, 2018.

A. T. Hoang, L. H. Nguyen, and D. N. Nguyen, “A Study of Mechanical Properties and Conductivity Capability of CU-9NI-3SN ALLOY,” Int. J. Appl. Eng. Res., vol. 13, no. 7, pp. 5120–5126, 2018.

A. T. Hoang, D. N. Nguyen, and V. V. Pham, “Heat Treatment Furnace For Improving The Weld Mechanical Properties: Design and Fabrication,” Int. J. Mech. Eng. Technol., vol. 9, no. 6, pp. 496–506, 2018.

V. V. Pham, “Analyzing the effect of heated wall surface temperatures on combustion chamber deposit formation,” J. Mech. Eng. Res. Dev., vol. 41, no. 4, pp. 17–21, 2018.

A. T. Hoang et al., “An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup,” Pet. Sci. Technol., vol. 36, no. 5, 2018.

V. D. Tran, A. T. Le, V. H. Dong, and A. T. Hoang, “Methods of operating the marine engines by ultra-low sulfur fuel to aiming to satisfy MARPOLAnnex VI,” Adv. Nat. Appl. Sci., vol. 11, no. 12, pp. 34–40, 2017.

A. T. Hoang, “Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system,” J. Mar. Eng. Technol., 2018. https://doi.org/10.1080/20464177.2018.1532734.

A. T. Hoang, X. L. Bui, and X. D. Pham, “A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 40, no. 8, pp. 929–939, 2018.

V. V. Le, D. C. Nguyen, and A. T. Hoang, “The potential of using the renewable energy aiming at environmental protection,” Int. J. Latest Eng. Res. Appl., vol. 2, no. 7, pp. 54–60, 2017.

A. T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Appl. Energy, vol. 231, pp. 138–166, 2018.

A. T. Hoang, Q. V. Tran, A. R. M. S. Al-Tawaha, V. V. Pham, and X. P. Nguyen, “Comparative analysis on performance and emission characteristics of an in-Vietnam popular 4-stroke motorcycle engine running on biogasoline and mineral gasoline,” Renew. Energy Focus, vol. 28, pp. 47–55, 2019.

A. T. Hoang and D. N. Cao, “Some methods of reducing NOx components in exhaust gas,” Int. J. Eng. Res. Manag. Stud., vol. 4, no. 5, pp. 11–18, 2017.

M. T. Pham, A. T. Hoang, A. T. Le, A. R. M. S. Al-Tawaha, V. H. Dong, and V. V. Le, “Measurement and prediction of the density and viscosity of biodiesel blends,” Int. J. Technol., vol. 9, no. 5, pp. 1015–1026, 2018.

A. T. Hoang and M. T. Pham, “Influences of heating temperatures on physical properties, spray characteristics of bio-oils and fuel supply system of a conventional diesel engine,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 5, pp. 2231–2240, 2018.

A. T. Hoang, “A Design and Fabrication of Heat Exchanger for Recovering Exhaust Gas Energy from Small Diesel Engine Fueled with Preheated Bio-oils,” Int. J. Appl. Eng. Res., vol. 13, no. 7, pp. 5538–5545, 2018.

A. T. Hoang, “The Performance of Diesel Engine Fueled Diesel Oil in Comparison with Heated Pure Vegetable Oils Available in Vietnam,” J. Sustain. Dev., vol. 10, no. 2, pp. 93–103, 2017.

T. A. Hoang and V. Van Le, “The Performance of A Diesel Engine Fueled With Diesel Oil, Biodiesel and Preheated Coconut Oil,” Int. J. Renew. Energy Dev., vol. 6, no. 1, pp. 1–7, 2017.

A. T. Hoang, M. M. Noor, and X. D. Pham, “Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel,” Int. J. Automot. Mech. Eng., vol. 15, no. 1, pp. 5110–5125, 2018.

A. T. Hoang et al., “An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup,” Pet. Sci. Technol., vol. 36, no. 5,pp. 361-370, 2018.

R. Pelc and R. M. Fujita, “Renewable energy from the ocean,” Mar. Policy, 2002.

Ocean Energy Systems, “Annual Report Ocean Energy System 2015,” 2015.

C. E. Epifanio and R. W. Garvine, “Larval transport on the Atlantic Continental Shelf of North America: A review,” Estuarine, Coastal and Shelf Science. 2001.

Ocean Energy Forum, “Ocean energy strategic roadmap,” Ocean Energy Strateg. Roadmap 2016, Build. Ocean energy Eur., 2016.

A. S. Bahaj, “Generating electricity from the oceans,” Renew. Sustain. Energy Rev., 2011.

L. M. Brekhovskikh, V. V. Goncharov, K. A. Naugol’nykh, and S. A. Rybak, “Waves in the ocean,” Radiophys. Quantum Electron., 1976.

W. Wang and R. X. Huang, “Wind Energy Input to the Surface Waves*,” J. Phys. Oceanogr., 2004.

European Ocean Energy Association, “Oceans of energy: European oceans energy roadmap 2010-2050,” 2010.

L. H. Holthuijsen, Waves in oceanic and coastal waters. 2007.

A. R. Plummer, A. J. Hillis, and C. Perez-Collazo, “Power systems,” in Wave and Tidal Energy, 2017.

P. L. Fraenkel, “Tidal current energy technologies,” Ibis (Lond. 1859)., 2006.

Tidal, “TIDAL,” Tidal, 2016. .

K. J. Ptasinski, “Renewable Energy Resources,” Energy, 2015.

I. G. Bryden and S. J. Couch, “ME1 - Marine energy extraction: Tidal resource analysis,” in Renewable Energy, 2006.

D. Greaves and G. Iglesias, Wave and tidal energy. 2017.

IRENA(International Renewable Energy Agency), “Tidal energy technology brief,” 2014.

T. A. Hoang, N. X. Chu, and T. Van Tran, “The Environmental Pollution In Vietnam: Source, Impact And Remedies,” Int. J. Sci. Technol. Res., vol. 6, no. 2, pp. 249–253, 2017.

N. Khan, A. Kalair, N. Abas, and A. Haider, “Review of ocean tidal, wave and thermal energy technologies,” Renewable and Sustainable Energy Reviews. 2017.

{Sustainable Energy Ireland} and {Aea Energy & Environment}, “Review and analysis of ocean energy systems development and supporting policies,” Renew. Energy, 2006.

S. M. Masutani and P. K. Takahashi, “Ocean Thermal Energy Conversion (OTEC),” in Encyclopedia of Ocean Sciences, 2010.

M. Ravindran and R. Abraham, “Ocean thermal energy conversion,” in Springer Handbook of Ocean Engineering, 2016.

M. Rhein et al., “Observations: Ocean,” in Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

K. E. Trenberth, J. T. Fasullo, and M. A. Balmaseda, “Earth’s energy imbalance,” J. Clim., 2014.

C. Wunsch and R. Ferrari, “Vertical mixing, energy, and the general circulation of the oceans,” Annu. Rev. Fluid Mech., 2004.

J. Vining and A. Muetze, “Ocean Wave Energy Conversion,” 2006.

B. Drew, A. R. Plummer, and M. N. Sahinkaya, “A review of wave energy converter technology,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2009.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Nguyen, P. and Dong, V. 2019. Ocean Energy - A Clean Energy Source. European Journal of Engineering Research and Science. 4, 1 (Jan. 2019), 5-11. DOI:https://doi.org/10.24018/ejers.2019.4.1.1062.