Structural and Optical Changes of Undoped GaN Layers Grown via Radio-frequency Magnetron Sputtering Obtained from GaN Powders

##plugins.themes.bootstrap3.article.main##

  •   Erick Gastellóu

  •   Crisoforo Morales

  •   Godofredo García

  •   Rafael García

  •   Gustavo Alonso Hirata

  •   Ana María Herrera

  •   Reina Galeazzi

  •   Enrique Rosendo

  •   Tomas Díaz

  •   Roman Romano

  •   Antonio Coyopol

Abstract

Undoped GaN layers were grown via radio-frequency magnetron sputtering, using a target manufactured with undoped GaN powders. Where the GaN powders were sintetized by nitridation of metallic gallium at 1000 °C in ammonia flow for two hours. X-ray diffraction patterns demonstrated that there are not a significant difference between the diffraction angles of the GaN powders and the GaN layers. The x-ray diffraction patterns for the GaN powders showed narrow peaks with a crystal size of 41 nm, while the GaN layers showed broad peaks with a crystal size of 7.7 nm. Scanning electron microscopy micrographs demonstrated the formation of crystals of irregular size with an average length of 1.56 μm for the GaN powders, while a homogeneous surface morphology with a thickness of 6.6 μm for the GaN layers was observed. Photoluminescence spectra showed a high emission at 3.49 eV (355.13 nm) for the GaN powders and an emission band energy located at 3.42 eV (361.54 nm) for the GaN layers, both emission bands were related to the band-to-band transition for the GaN. Raman spectra for the GaN powders showed the A1(TO), E1(TO), and E2(High) classical vibration modes. The GaN layers only showed the A1(TO) mode.


Keywords: GaN; Layers; Powders; Sputtering

References

W.C. Johnson, J.B. Parson, M.C. Crew, Nitrogen compounds of gallium III. J. Phys. Chem. 10(1932) 2651 - 2654. DOI: 10.1021/j150340a01

H.P. Maruska, W.C. Rhines, A modern perspective on the history of semiconductor nitride blue light sources, Solid States Electronics 111(2015) 32 – 41. https://doi.org/10.1016/j.sse.2015.04.010

S.T. Pearton, J.C. Zolper, R.J. Shul , F. Ren, GaN: Processing, defects, and devices, J. Appl. Phys. 1(1999) 1-78. https://doi.org/10.1063/1.371145

S. Gradečak, F. Qian, And. Li, H.G. Park, C.M. Lieber, GaN nanowire lasers with low lasing thresholds, Appl. Phys. Lett. 87(2005) 173111-1-3. https://doi.org/10.1063/1.2115087

S. Pimputkar, J.S. Speck, S. Nakamura, Basic ammonothermal GaN growth in molybdenum capsules, J. Cryst. Growth 456(2016) 15 - 20. DOI:10.1016/j.jcrysgro.2016.07.034

S. Sintonen, P. Kivisaari , S. Pimputkar, S. Suihkonen, T. Schulz, J. S. Speck, S. Nakamura, Incorporation and effects of impurities in different growth zones within basic ammonothermal GaN, J. Cryst. Growth456(2016)43-50. https://doi.org/10.1016/j.jcrysgro.2016.08.040

H. Okumura. S. Misawa, S. Yoshida, Epitaxial growth of cubic and hexagonal GaN on GaAs by gas-source molecular-beam epitaxy, Appl. Phys. Lett. 9(1991) 1058 - 1060.

https://doi.org/10.1063/1.106344

H. Vilchis, V.M, Sanchez, R.A. Escobosa. Cubic GaN layers grown by metalorganic chemical steam deposition on GaN templates obtained by ninitridation of GaAs, Thin Solid Films 520(2012) 5191 - 5194. https://doi.org/10.1016/j.tsf.2012.03.123

H. Okumura, K.Ohta, G. Feuillet, K. Balakrishnan, S. Chichibu, H. Hamaguchi, Growth and characterization of cubic GaN, J. Cryst. Growth17(1997)113-133. https://doi.org/10.1016/S0022-0248(97)00084-5

H. Li, R.J. Xie, N. Hirosaki, B. Dierre, T. Sekiguchi, Y. Yajima, Preparation and cathodoluminescense of Mg-doped and Zn-doped GaN powders, J. Am. Ceram. Soc. 91(5)(2008) 1711 – 1714. https://doi.org/10.1111/j.1551-2916.2008.02338.x

J.K. Hite, T.J. Anderson, L.E. Luna, J.C. Gallagher, M.A. Mastro, J.A. Freitas, C.R. Eddy Jr, Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD, J. Cryst. Growth 498(2018) 352 – 356. https://doi.org/10.1016/j.jcrysgro.2018.06.032

Z. Liliental-Weber, R. dos Reis, T. Sochacki, M. Bockowski, The influence of the substrate misorientation on the structural quality of GaN layers grown by HVPE, J. Cryst. Growth 498(2018) 346 – 351. https://doi.org/10.1016/j.jcrysgro.2018.07.010

C.P. Thao, D.H. Kuo, D.J. Jan, Codoping effects of the Zn acceptor on the structural characteristics and electrical properties of the Ge donor-doped GaN thin films and its heterojuntion diodes all made by reactive sputtering, J. Mat. Sci. Sem. Proc. 82(2018) 126-134. https://doi.org/10.1016/j.mssp.2018.04.002

W.S. Jung, Synthesis and characterization of gallium nitride powders from a gallium(III) sulfate salt in flowing ammonia, J. Kor. Chem. Soc. 11(2003) 1058 - 1061. DOI: 10.4191/KCERS.2003.40.11.1058

R. Garcia, G.A. Hirata, A.C. Thomas, F.A. Ponce, Structure and luminescence of nanocrystalline gallium nitride synthesized by a novel polymer pyrolysis route, Opt. Mater. 29(2006) 19 – 23. https://doi.org/10.1016/j.optmat.2006.03.004

T. Maruyama, H. Miyake, Gallium nitride thin films deposited by radio-frequency magnetron sputtering, J. Vac. Sci. Technol. A 4(2006) 1096 - 1099. https://doi.org/10.1116/1.2208988

E. Gastellóu, C. Morales, R. García, G. García, G.A. Hirata, R. Galeazzi, A.M. Herrera, E. Rosendo, T. Díaz, J.R. Ramos, R. Romano, A. Coyopol, Enhanced crystalline size of undoped GaN powders obtained by nitridation of metallic gallium, Opt. Mater. 83(2018) 220-224. https://doi.org/10.1016/j.optmat.2018.06.021

J.I. Langford, A.J.C. Wilson, Sherrer after Sixty Years: A survey and some new results in the determination of crystallite size, J. Appli. Cryst. 11(1978)102-113. https://doi.org/10.1107/S0021889878012844

M.A. Reshchikov, H. Morkoç, Luminescence properties of defects in GaN, J. Appl. Phys. 97(2005) 061301-1 - 061301-95. https://doi.org/10.1063/1.1868059

M.S. Kumar, J. Kumar, XRD, XPS, SEM, PL and Raman scattering analysis of synthesized GaN powder, Mat. Chem. Phys, 77(2002) 341-345. https://doi.org/10.1016/S0254-0584(02)00012-3

G.N. Chaudhari, V.R. Chinchamalatpure, S.A. Ghosh, Structural and electrical characterization of GaN thin films on Si(100), Am. J. Analyt. Chem. 2(2011) 984-988. doi:10.4236/ajac.2011.28115

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Gastellóu, E., Morales, C., García, G., García, R., Hirata, G., Herrera, A., Galeazzi, R., Rosendo, E., Díaz, T., Romano, R. and Coyopol, A. 2019. Structural and Optical Changes of Undoped GaN Layers Grown via Radio-frequency Magnetron Sputtering Obtained from GaN Powders. European Journal of Engineering Research and Science. 4, 2 (Feb. 2019), 59-63. DOI:https://doi.org/10.24018/ejers.2019.4.2.1164.

Most read articles by the same author(s)