Hexagonal Nanocrystals into AlGaN Powders Obtained via Pyrolysis from an Organometallic Compound


  •   Ana Maria Herrera

  •   Godofredo García

  •   Erick Gastellóu

  •   Fabiola Nieto

  •   Rafael García

  •   Gustavo Alonso Hirata

  •   Oscar Edel Contreras

  •   Crisoforo Morales

  •   Enrique Rosendo

  •   Tomas Díaz


Hexagonal nanocrystals into Al0.2Ga0.8N and Al0.6Ga0.4N powders via pyrolysis from an organometallic compound, followed by a nitridation process in ammonia flow at 1000 °C for two hours were obtained. X-ray diffraction patterns demonstrated a shift towards greater angles to the right for the AlGaN powders with respect to GaN powders, this shift could indicate the formation of the AlGaN powders. Scanning electron microscopy micrographs showed the obtaining from semi-plates of porous appearance for the Al0.2Ga0.8N powders until well-defined plates for the Al0.6Ga0.4N powders. High resolution transmission electron microscopy micrographs demonstrated the presence of hexagonal nanocrystals into Al0.2Ga0.8N powders with an average crystal size of 10.3 nm, while that for the Al0.6Ga0.4N powders an average crystal size of 9.7 nm was observed. UV-visible spectra showed a transmittance cut-off for the Al0.2Ga0.8N powders of 3.71 eV (334.2 nm) and a transmittance cut-off of 4.53 eV (273.7 nm) for the Al0.6Ga0.4N powders.

Keywords: Nanocrystals, Nitridation, Pyrolysis, Semiconductor


S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode, Springer, Berlin, 2000.

Lars Bergström, Per Delsing, Anne L’Huillier, and Olle Inganäs, the Nobel Committee for Physics, The Nobel Prize in Physics 2014, The Royal Swedish Academy of Sciences. Available online: HTTP://KVA.SE

E. Gastellóu, C. Morales, R. García, G. García, G.A. Hirata, A.M. Herrera, R. Galeazzi, E. Rosendo, T. Díaz, E.M. Tejeda, P-type GaN powders obtained by nitridation of Ga-Mg liquid metallic solution, J. Alloys Compd. 772(2019) 1224-1029. Available online: https://doi.org/10.1016/j.jallcom.2018.09.174 (accessed on 17 September 2018).

P.S. Vergeles, V.I. Orlov, A.Y. Polyakov, E.B. Yakimov, T. Kim, I.H. Lee, Recombination and optical properties of dislocations gliding at room temperature in GaN under applied stress, J. Alloys Compd. 776(2019) 181-186. . Available online: https://doi.org/10.1016/j.jallcom.2018.10.280 (accessed on 23 October 2018).

Y. Wu, Y. Wang, K. Sun, A. Aiello, P. Bhattacharya, Z. Mi, Molecular beam epitaxy and characterization of Mg-doped GaN epilayers grown on Si (001) substrate through controlled nanowire coalescence, J. Cryst. Growth 498 (2018) 109 -114. Available online: https://doi.org/10.1016/j.jcrysgro.2018.06.008 (accessed on 15 June 2018).

D. Kambayashi, Y. Mizuno, H. Takakura, T. Murayama, S. Naritsuka, Mesa orientation dependence of lateral growth of GaN microchannel epitaxy by electric liquid-phase epitaxy using a mesa-shaped substrate, J. Cryst. Growth 496 (2018) 74 - 79. Available online: https://doi.org/10.1016/j.jcrysgro.2018.04.011 (accessed on 12 April 2018).

H. Amano et al., The 2018 GaN power electronics roadmap, J. Phys. D: Appl. Phys. 51(2018) 1– 48. Available online: https://doi.org/10.1088/1361-6463/aaaf9d (accessed on 26 March 2018).

B. Kuppulingam, Shubra Singh, K. Baskar, Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures, in: AIP Conference Proceedings, 1591(2014) 1437 -1439. Available online: https://doi.org/10.1063/1.4872988 (accessed on 17 February 2015).

R. Garcia, S. Srinivasan, O.E. Contreras, A.C. Thomas, F.A. Ponce, AlxGa1-xN (0≤x≤1) nanocrystalline powder by pyrolysis route, J. Cryst. Growth 308(2007) 198 – 203. Available online: https://doi.org/10.1016/j.jcrysgro.2007.07.048 (accessed on 6 August 2007).

M. Forsberg, C. Hemmingsson, H. Amano, G. Pozina, Dynamic properties of excitons in ZnO/AlGaN/GaN hybrid nanostructures, Nature 5(2015) 1- 5. Available online: https://doi.org/10.1038/srep07889 (accessed on 20 January 2015).

M. Forsberg, C. Hemmingsson, H.Amano, G. Pozina, Time-resolved photoluminescence properties of hybrids based on inorganic AlGaN/GaN quantum wells and colloidal ZnO nanocrystals, Superlattices and Microstructures, 87 (2015), 38-41. Available online: https://doi.org/10.1016/j.spmi.2015.07.017 (accessed on 8 July 2015).

H. Sun, M.K. Shakfa, M.M. Muhammed, B. Janjua, K.H. Li, R. Lin, T. K. Ng, I.S. Roqan, B.S. Ooi, X. Li, Surface-passivated AlGaN nanowires for enhanced luminescence of ultraviolet light emitting diodes, ACS Photonics, 5 (2018), 964 – 970. Available online: 10.1021/acsphotonics.7b01235 (accessed on 19 December 2017).

A.M. Herrera, R. García, G. García, E. Gastellóu, F. Nieto, G.A. Hirata, O.E. Contreras, C. Morales, E. Rosendo, T. Díaz, Experimental determination of the pyrolysis temperatures of an organometallic complex to obtain AlXGa1-XN powders, J. Alloys Compd. 775(2019) 109 – 115. Available online: https://doi.org/10.1016/j.jallcom.2018.10.094 (accessed on 10 October 2018).

M. Stutzmann *, O. Ambacher, A. Cros, M.S. Brandt, H. Angerer, R. Dimitrov, N. Reinacher, T. Metzger, R. Höpler, D. Brunner, F. Freudenberg, R. Handschuh, Ch. Deg, Properties and applications of MBE grown AlGaN, Mater Sci and Eng B50 (1997) 212–218. Available online: https://doi.org/10.1016/S0921-5107(97)00165-7 (accessed on 27 March 1998).

Xiaoyan Wang, Xiaoliang Wang, Guoxin Hu, Baozhu Wang, Zhiyong Ma, Hongling Xiao, Cuimei Wang, Junxue Ran, Jianping Li, Characteristics of high Al content AlxGa1xN grown by metalorganic chemical vapor deposition, Microelectron J. 38 (2007) 838–841. Available online: https://doi.org/10.1016/j.mejo.2007.07.090 (accessed on 30 August 2007).

J. F. Muth, J. D. Brown, M. A. L. Johnson, Zhonghai Yu, R. M. Kolbas, J. W. Cook, Jr. and J. F. Schetzina, Absorption Coefficient and Refractive Index of Gan, AlN and AlGaN Alloys, MRS Internet J. Nitride Semicond. Res. 4S1, G5.2 (1999) 502-507. Available online: https://doi.org/10.1557/S1092578300002957 (accessed on 13 June 2014).

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher,a) and M. Stutzmann, Optical constants of epitaxial AlGaN films and their temperature dependence, J. Appl. Phys. 82, (1997) 5090-5096. . Available online: https://doi.org/10.1063/1.366309 (accessed on 4 June 1998).

Shuchang Wang, Xiong Zhang, Qian Dai, Zhe Chuan Feng, Yiping Cui, An X-ray diffraction and Raman spectroscopy investigation of AlGaN epi-layers with high Al composition, Optik 131 (2017) 201–206. . Available online: https://doi.org/10.1016/j.ijleo.2016.11.079 (accessed on 16 November 2016).


Download data is not yet available.


How to Cite
Herrera, A., García, G., Gastellóu, E., Nieto, F., García, R., Hirata, G., Contreras, O., Morales, C., Rosendo, E. and Díaz, T. 2019. Hexagonal Nanocrystals into AlGaN Powders Obtained via Pyrolysis from an Organometallic Compound. European Journal of Engineering and Technology Research. 4, 3 (Mar. 2019), 68-72. DOI:https://doi.org/10.24018/ejers.2019.4.3.1183.

Most read articles by the same author(s)