Kalman Algorithm Based Electrical Impedance Tomography Imaging

##plugins.themes.bootstrap3.article.main##

  •   Md Rabiul Islam

Abstract

Electrical Impedance Tomography (EIT) is a non-invasive imaging technique that displays changes in conductivity within a body. This method finds application in biomedical and geology. EIT finds use in medical applications, as the different tissues of the body have different conductivity and dielectric constants. In this paper a phantom model is designed considering Finite Element Model (FEM). AC current of amplitude 1 mA and frequency 1 KHz is applied considering adjacent protocol with noise less and noisy cases. From the computed voltage data image is reconstructed using Kalman algorithm. For noisy case noise levels equal to Signal-to-Noise Ratio (SNR) 30 dB, 15 dB and 7 dB were considered. Kalman algorithm is studied for EIT image reconstruction in noise free and noisy case, in terms of shape, size, spatial location of the target object.


Keywords: Electrical Impedance Tomography, Kalman Algorithm, Conductivity

References

G. Lymperopoulos, P. Lymperopoulos, V. Alikari, C. Dafogianni, S. Zyga, N. Margari, “Applications for electrical impedance tomography and electrical properties of the human body,” Adv Exp Med Biol. 2017.

K. Boone, D. Barber, B. Brown, “Imaging with electricity: report of the European concerted action on impedance tomography,” Journal of Medical Engineering and Technology, Vol. 21, 1997.

R. P. Henderson, J. P. Webster, “An impedance camera for spatially specific measurements of the thorax,” IEEE Trans. Biomed. Eng., vol. 25, 1978.

D. C. Barber, B. H. Brown, “Applied potential tomography,” J. Phys. E. Sci. Instru, vol. 17, 1984.

I. Frerichs, M.B.P Amato, A. H. Van Kaam, D. G. Tingay, Z. Zhao, B. Grychtol, M. Bodenstein, H. Gagnon, S. H. Böhm, E. Teschner, O. Stenqvist, T. Mauri, V. Torsani, L. Camporota, A. Schibler, G. K. Wolf, D. Gommers, S. Leonhardt, A. Adler, “Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations,” Consensus Statement of the Translational EIT Development Study Group, Thorax, 72 (1), 83–93. 2017.

R. H. Bayford, “Bio-impedance tomography (electrical impedance tomography), annual review of biomedical engineering,” 63–91, 2006.

S. Ogawa, T. M. Lee, A. S. Nayak, P. Glynn, “Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magnetic Reson. Med. 14, 68–78, 1990.

M. Faulkner, S. Hannan, K. Aristovich, J. Avery, D. Holder, “Feasibility of imaging evoked activity throughout the rat brain using electrical impedance tomography,” ELSEVIER, NeuroImage, 178 (2018) 1–10.

D. Holder, “Electrical impedance tomography: method, history and applications series in medical physics and biomedical engineering,” CRC Press, 2005.

L. Zhou, B. Harrach, J. K. Seo, “Monotonicity-based electrical impedance tomography for lung imaging,” 2018.

A. Zarafshani, T. Bach, C. R. Chatwin, S. Tang, L. Xiang, B. Zheng, “Conditioning electrical impedance mammography system,” ELSEVIER, Measurement, 116 (2018) 38–48.

Y. Zou, Z. Guo, “A review of electrical impedance techniques for breast cancer detection,” Med. Eng. Phys. 25 (2003) 79–90.

B. Burle, L. Spieser, C. Roger, L. Casini, T. Hasbroucq, F. Vidal, “Spatial and temporal resolutions of EEG: is it really black and white? a scalp current density view,” Int. J. Psychophysiol. 97, 210–220, 2015.

L. E. Baker, “Principles of the impedance technique,” IEEE Eng. Med. & Biol. Mag.8:11-15, 1998.

H. P. Schwan, “Electrical properties of tissue and cell suspensions,” Adv. Biol. Med. Phys. 5:147–209, 1957.

R. Pethig, D. B. Kell, “The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology”.

S. Zlochiver, “Induced current electrical impedance tomography for medical applications a theoretical study”.

J. C. Newell, G. D. Gisser, D. Isaacson, “An electric current tomography,” IEEE Transactions on Biomedical Engineering, Vol. 35, No. 10, October, 1988.

V. Kulkarni, J. M. S. Hutchison, I. K. Ritchie, J. R. Mallard, “Impedance imaging in upper arm fractures,” J. Biomed. Eng., 1990.

P. C. Hansen, “Regularization tools: a matlab package for analysis and solution of discrete ill-posed problems,” Numerical Algorithms, 1994.

R. M. Gulrajani, “Bioelectricity and Biomagnetism,” John Wiley & Sons, Inc., 1998.

M. Vauhkonen, P. A. Karjalainen, J. P. Kaipio, “A kalman filter approach to track fast impedance changes in electrical impedance tomography,” IEEE Transactions.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Islam, M. 2019. Kalman Algorithm Based Electrical Impedance Tomography Imaging. European Journal of Engineering Research and Science. 4, 4 (Apr. 2019), 52-55. DOI:https://doi.org/10.24018/ejers.2019.4.4.1227.