A Brief Review of Growth Techniques for Obtaining of III-V Semiconductor Compounds


  •   Erick Gastellóu

  •   G. García

  •   A. M. Herrera

  •   C. Morales

  •   R. García

  •   G. A. Hirata

  •   M. Robles

  •   J. A. Rodríguez

  •   I. E. García


Electronic devices have essential importance in our quality of life. Our species has multiple comforts and benefits obtained by current technology, such as microelectronics, optoelectronics, and nanotechnology. However, few are interested in the different physical phenomena that are behind our technology. This paper presents a brief review of four growth techniques for the obtaining of III-V semiconductors compounds. Techniques such as metalorganic chemical vapor deposition, hot filament chemical vapor deposition, liquid phase epitaxy, and molecular beam epitaxy are described in a simple way to motivate the understanding of the theoretical concepts that make operated our technology.

Keywords: Growth, Layers, Epitaxy, Semiconductor Compound


W.F. Brinkman, D.E. Haggan, W.W. Troutman, A history of the invention of the transistor and where it will lead us. IEEE Journal of Solid-State Circuits. (32) (12) (1997) 1858 – 1865. DOI: 10.1109/4.643644

O. Ambacher, Growth and applications of group III-nitrides, J. Phys. D Appl. Phys. 31 (1998) 2653–2710. DOI: 10.1088/0022-3727/31/20/001

L. Liu, J.H. Edgar, Substrates for gallium nitride epitaxy, Mater. Sci. Eng. R 37 (2002) 61–127. DOI: https://doi.org/10.1016/S0927-796X(02)00008-6

Robert F. Davis, Nitrides for electronic and optoelectronic applications, Proc. IEEE 79 (5) (1991) 702–712. DOI: 10.1109/5.90133.

H. Amano, et al., The 2018 GaN power electronics roadmap, J. Phys. D Appl. Phys. 51 (2018) 1-48. DOI: https://doi.org/10.1088/1361-6463/aaaf9d.

A. Denis, G. Goglio, G. Demazeau, Gallium nitride bulk crystal growth processes: A review, Mater. Sci. Eng. R 50 (2006) 167–194. DOI: https://doi.org/10.1016/j.mser.2005.11.001.

H.M. Manasevit, Single-crystal gallium arsenide on insulating substrates. Applied Physics Letters 12(4)(1968) 156 – 159. DOI: https://doi.org/10.1063/1.1651934.

J.J. Coleman, Metalorganic chemical vapor deposition for optoelectronic devices. Proceedings of the IEEE 85(11)(1997) 1715 – 1729. DOI: 10.1109/5.649647

J.I. Davies, G. Fan, J.O. Williams, Metal-organic Chemical Vapour Deposition (MOCVD) of Compounds Semiconductors, Part 1.- Optimisation of Reactor Design for the Preparation of ZnSe J. Chem. Soc, Faraday Trans. l. 81(1985) 2711 – 2722 DOI:10.1039/F19858102711

J.I. Pankove, T.D. Moustakas, Gallium Nitride (GaN) I. Edi. Acamic Press. 1998. USA.

H. Vilchis, V.M. Sanchez, R.A. Escobosa, Cubic GaN layers grown by metalorganic chemical vapor deposition on GaN templates obtained by nitridation of GaAs, Thin Solid Films 520 (2012) 5191–5194 DOI: 10.1016/j.tsf.2012.03.123

C. Guarneros, V. Sánchez, Magnesium doped GaN grown by MOCVD, Mater. Sci. Eng. B 174 (2010) 263–265. DOI: 10.1016/j.mseb.2010.03.022

J.K. Hite, T.J. Anderson, L.E. Luna, J.C. Gallagher, M.A. Mastro, J.A. Freitas, C.R. Eddy Jr., Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD, J. Cryst. Growth 498 (2018) 352–356. https://doi.org/10.1016/j.jcrysgro.2018.06.032

H. Matsumura, H. Umemoto, K. K. Gleason, R.E.I. Schropp, Catalytic chemical vapor deposition, Wiley-vch, Germany 2019.

M.G. Astles Liquid Phase Epitaxial Growth of III - V Compound Semiconductor Materials and their Device Applications, Adam Hilger USA 1990. DOI: https://doi.org/10.1002/crat.2170300406

A.J. Downs, Chemistry of Aluminum, Gallium, Indium and Thallium, Springer Netherlands 1993.

H. Nelson, Liquid-phase epitaxy—its role in crystal growth technology, J. Cryst. Growth 27(1974) 1-5. DOI: https://doi.org/10.1016/S0022-0248(74)80045-X

E. Gastellou, Crecimiento y caracterización de películas cuaternarias de AlGaAsSb sobre GaSb por LPE a bajas temperaturas, Tesis de Maestría, CIDS-ICUAP-BUAP, 2000.

H.C. Casey JR, M.B. Panish, Heterostructure lasers Part B: Materials and operating characteristics, Academic Press, USA 1978.

W.C. Yang, P.Y. Lee, H.Y. Tseng, C.W. Lin, Y.T. Tseng, K.Y. Cheng, Mg incorporation in GaN grown by plasma-assisted molecular beam epitaxy at high temperatures, J.Cryst. Growth 439 (2016) 87–92. DOI: https://doi.org/10.1016/j.jcrysgro.2016.01.011

H. Okumura, S. Misawa, S. Yoshida, Epitaxial growth of cubic and hexagonal GaN on GaAs by gas-source molecular-beam epitaxy, Appl. Phys. Lett. 59 (9) (1991) 1058–1060. DOI: https://doi.org/10.1016/0039-6028(92)91086-Q

Ch. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K.K. Maurya, M. Senthil Kumar, S.S. Kushvaha, Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors, J. Alloys Compd. 770 (2019) 572–581. DOI: https://doi.org/10.1016/j.jallcom.2018.08.149

Y. Wu, Y. Wang, K. Sun, A. Aiello, P. Bhattacharya, Z. Mi, Molecular beam epitaxy and characterization of Mg-doped GaN epilayers grown on Si (001) substrate through controlled nanowire coalescence, J. Cryst. Growth 498 (2018) 109–114. DOI: 10.1016/j.jcrysgro.2018.06.008.


Download data is not yet available.


How to Cite
Gastellóu, E., García, G., Herrera, A., Morales, C., García, R., Hirata, G., Robles, M., Rodríguez, J. and García, I. 2019. A Brief Review of Growth Techniques for Obtaining of III-V Semiconductor Compounds. European Journal of Engineering Research and Science. 4, 9 (Sep. 2019), 17-21. DOI:https://doi.org/10.24018/ejers.2019.4.9.1477.