Anion-Exchange Membrane with Poly(3,3’-(hexyl) bis(1-vinylimidazolium) bromide)/PVC Composites Prepared by Inter-polymerization


  •   Soo-Yeoun Kim

  •   Woonjung Kim

  •   Seong-Ho Choi


The advanced anion-exchange membranes with the poly(3,3’-(hexyl)bis(1-vinylimidazolium)bromide), PHVB, was synthesized by inter-polymerization of  a 3,3'-(hexyl)bis(1-vinylimidazolium) bromide in poly(vinyl chloride), PVC, solution.  We confirmed the successful preparation of the advanced anion-exchange membrane (AEM) such as ionic conductivity (S/cm), water uptake (%), ion-exchange capacity (meq/g), vanadium permeability, thermal properties, and SEM analysis, respectively.  The vanadium redox flow battery (VRFB) performances using the prepared AEM based on PHVB/PVC composite polymers in organic electrolytes was examined.  In the prepared advanced AEM, the maximum voltages reached 2.5 V under the fixed current value of 0.005mA.  The synthesized advanced AEM has also good stability with organic electrolyte by battery performance under 1000 cycles. As results, the advanced AEM based on PHVB/PVC prepared by the inter-polymerization is suitable for use as a battery separator in VRFB.

Keywords: Anion-Exchange Membrane, Poly (vinyl chloride), Poly(3,3’-(hexyl) bis(1-vinylimidazolium) bromide), Inter-Polymerization, Good Stability, Vanadium Redox Flow Performance


M. Rychcik and M. Skyllas-Kazacos. “Characteristics of a new all-vanadium redox flow battery”, J. Power Sources. Vol. 22, pp. 59-61, 1988. [Google]

Y. Yan, Y. Li, M. Skyllas-Kazacos, and J. Bao. “Modelling and simulation of thermal behaviour of vanadium redox flow battery”, J. Power Sources, vol. 322, pp. 116-128, 2016. [Google]

A. Parasuraman, T.M. Lim, C. Menictas, and M. Skyllas-Kazacos. “Review of material research and development for vanadium redox flow battery applications’ Electrochim. Acta, vol. 101, pp. 27-40, 2013. [Google]

X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, and L. Wei. “ Modeling of ion transport through a porous separator in vanadium redox flow batteries”, J. Power Sources, vol. 327, pp. 67-76, 2016. [Google]

S.Y. Won, K.M. Oh, and H.C. Ju. “Numerical analysis of vanadium crossover effects in all-vanadium redox flow batteries”, ElectrochimActa, vol. 177, pp. 301-320, 2015. [Google]

B. Jiang, L. Wu, L. Yu, X. Qiu, and J. Xi. “A comparative study of Nafion series membranes for vanadium redox flow batteries”, J. Membr. Sci. vol. 510, pp. 18-26, 2016. [Google]

Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang. “Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery”, J. Membr. Sci. vol. 325, pp. 553-558, 2018. [Google]

A. Guimet, L. Chikh, A. Morin, and O. Fichet. “Effect of a neutral fluorinated network on the properties of a perfluorosulfonic acid ionomer as proton exchange membrane”, Int. J. Hydrogen Energy, vol. 555, pp. 1-11, 2016. [Google]

E. Cordova-Mateo, O. Bertran, C. Ferreira, and C. Aleman. “Transport of hydronium ions inside poly(styrene-co-divinyl benzene) cation exchange membranes”, J. Membr. Sci. vol. 428, pp. 393-402,2013. [Google]

S. Savari, S. Sachdeva, and A. Kumar. “Electrolysis of sodium chloride using composite poly(styrene-co-divinylbenzene) cation exchange membranes”, J. Membr. Sci. vol. 310, 246-261, 2008. [Google]

D. Song, J. Xu, Y. Fu, L. Xu, B. Shan. “Polysulfone/sulfonated polysulfone alloy membranes with an improved performance in processing mariculture wastewater”, Chem. Eng. J. vol. 304, pp. 882-889, 2016. [Google]

V.R. Hande, S.K. Rath, S. Rao, and M. Patri. “Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM)”, J. Membr. Sci. vol. 372, pp. 40-48, 2011. [Google]

C. Zhao, H. Lin, K. Shao, X. Li, H. Ni, Z. Wang, and H. Na. “Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes”, J. Power Sources, vol. 162, pp. 1003-1009, 2006. [Google]

S. Singha, T. Jana, J.A. Modestra, A.N. Kumar, and S.V. Mohan. “Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells”, J. Power Sources, vol. 317, 143-152, 2016. [Google]

Y. Devrim, H. Devrim, and I. Eroglu. “Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells”, Int. J. Hydrogen Energy, vol. 41, pp. 10044-10052, 2016. [Google]

Y. Zhang, S. Zhang, X. Huang, Y. Zhou, Y. Pu, and H. Zhang. “Synthesis and properties of branched sulfonated polyimides for membranes in vanadium redox flow battery application”, Electrochim. Acta, vol. 201, pp. 308-320, 2016. [Google]

T. Luo, Y. Zhang, H. Xu, Z. Zhang, F. Fu, S. Gao, A. Ouadah, Y. Dong,S. Wang, and C. Zhu. “Highly conductive proton exchange membranes from sulfonated polyphosphazene-graft-copolystyrenes doped with sulfonated single-walled carbon nanotubes”, J. Membr. Sci. vol. 514, pp. 527-536, 2016. [Google]

L. Lu, Z. Zhou, Y. Zhang, S. Wang, and Y. Zhang. “Reinforcement of styrene–butadiene–styrene tri-block copolymer by multi-walled carbon nanotubes via melt mixing”, Carbon, vol. 45(13) , 2621-2627, 2007. [Google]

S.H. Lee, S.H. Choi, S. Gopalan, K.P. Lee, and A. Gopalan. “Preparation of new self-humidifying composite membrane by incorporating graphene and phosphotungstic acid into sulfonated poly(ether ether ketone) film”, International Journal of Hydrogen Energy, vol. 39, I7162-I7177, 2014. [Google]

S.Y. Tawfik, J.N. Asasad, and M.W. Sabaa. “Thermal and mechanical behaviour of flexible poly(vinyl chloride) mixed with some saturated polyesters”, Polym. Degrad. Stab. Vol. 91, pp. 385-392, 2006. [Google]

T. Mackulak, A. Takacova, M. Gal, M. Marton, and J. Ryba. “PVC degradation by Fenton reaction and biological decomposition”, Polym. Degrad. Stab. vol. 120, pp. 226-231, 2015. [Google]


Download data is not yet available.


How to Cite
Kim, S.-Y., Kim, W. and Choi, S.-H. 2019. Anion-Exchange Membrane with Poly(3,3’-(hexyl) bis(1-vinylimidazolium) bromide)/PVC Composites Prepared by Inter-polymerization. European Journal of Engineering and Technology Research. 4, 10 (Oct. 2019), 116-120. DOI: