Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment

##plugins.themes.bootstrap3.article.main##

  •   Miguel Angel Baltazar-Zamora

  •   Abigail Landa-Sánchez

  •   Laura Landa-Ruiz

  •   Hilda Ariza-Figueroa

  •   Pedro Gallego-Quintana

  •   Aldo Ramírez-García

  •   René Croche

  •   Sabino Márquez-Montero

Abstract

This research evaluates of the electrochemical behavior of steel bars of the AISI 316 and AISI 1018 embedded in sustainable concrete with partial replacement of CPC 30R by Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF). The electrochemical techniques used to evaluate the corrosion were half-cell potential or Ecorr -ASTM C-876-15- and the Linear Polarization Resistance Technique (LPR) - ASTM G59-. Ecorr and Icorr results indicate after more than 300 days of exposure to the marine environment (3.5% NaCl solution), a high resistance of AISI 316 steel, with Ecorr values lower than -200 mV indicating a 10% probability of corrosion, and a level of negligible corrosion, with values less than 0.1 µA/cm2 in the three mixtures, with sustainable concrete values slightly lower. The results indicate a resistance of more of almost 100 times greater than AISI 316 steel compared to the results obtained in AISI 1018 steel.


Keywords: Sustainable Concrete, Corrosion, AISI 316, SCBA, Marine Environment

References

O. Troconis de Rincón et. al., (2016). Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion, 72:6, pp. 824-833.

M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. (2011). Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 33, pp. 644-652.

G. Santiago-Hurtado, M.A. Baltazar-Zamora, R. Galván-Martínez, L. D. López L, F. Zapata G, P- Zambrano, C. Gaona-Tiburcio, F. Almeraya-Calderón. (2016). Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science, 11:6, pp. 4850-4864.

D.M. Bastidas, M. Criado, S. Fajardo, A. La Iglesia, J.M. Bastidas. (2015). Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides. Cement and Concrete Composites, 61, pp. 1-6.

M.A. Baltazar-Zamora, G. Santiago-Hurtado, V.M. Moreno L, R. Croche B, M. de la Garza, F. Estupiñan L, P. Zambrano R., C. Gaona-Tiburcio. (2016). Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science, 11:12, pp. 10306-10319.

G. Santiago-Hurtado, M.A. Baltazar-Zamora, J. Olguín-Coca, L. D. López L, R. Galván-Martínez, A. Ríos-Juárez, C. Gaona-Tiburcio, F. Almeraya-Calderón. (2016). Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science, 11:4, pp. 2994-3006.

M.A. Baltazar-Zamora et. al. (2012). Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 7:4, pp. 2997-3007.

M.K. Yashwanth, B.G. Naresh Kumar, D.S. Sandeep Kumar. (2019). Potential of Bagasse Ash as Alternative Cementitious Material in Recycled Aggregate Concrete. International Journal of Innovative Technology and Exploring Engineering, 8:11, pp. 271-275.

A. Landa-Gómez, R. Croche B, S. Márquez M, R. Villegas A, H.A. Ariza-Figueroa, F.H. Estupiñán-López, C. Gaona-Tiburcio, F. Almeraya-Calderón, M.A. Baltazar-Zamora. (2018). Corrosion Behavior 304 and 316 Stainless Steel as Reinforcement in Sustainable Concrete Based on Sugar Cane Bagasse Ash Exposed to Na2SO4. ECS Transactions, 84:1, pp. 179-188.

O. Ojeda-Farías, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. (2018). Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, 8:2, pp. 194-208.

Aldo Landa-Gómez, R. Croche B, O.M. López Yza, R. Galván-Martínez, J.A. Cabral-Miramontes, C. Gaona Tiburcio, F. Almeraya, Miguel Angel Baltazar-Zamora. (2018). Corrosion Behavior of AISI 316 Stainless Steel as Reinforcement in Ternary Sustainable Concrete Based on Scba-SF Exposed in Seawater. ECS Meeting Abstracts, MA2018-02, pp. 584.

ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1, p. 29. Ed. IMCYC, México (2004).

ASTM C29 / C29M–07–Standard Test Method for Bulk Density (“Unit Weight”) and Voids in 412 Aggregate; ASTM International, West Conshohocken, PA, 2007, www.astm.org

ASTM C33/C33M–16e1–Standard Specification for Concrete Aggregates; ASTM International, 414 West Conshohocken, PA, 2016, www.astm.org

ASTM C127–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of 416 Coarse Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org

ASTM C128–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of 418 Fine Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org

ASTM C136 / C136M –14–Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; 420 ASTM International, West Conshohocken, PA, 2014, www.astm.org

NMX-C-156-ONNCCE-2010: Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México, (2010).

ASTM C 1064/C1064M–08–Standard Test Method for Temperature of Freshly Mixed Hydraulic-426 Cement Concrete; ASTM International, West Conshohocken, PA, 2008, www.astm.org

NMX-C-162-ONNCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México, (2014).

NMX-C-083-ONNCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCE S.C., México, (2014).

G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L., P. Zambrano Robledo, C. Gaona-Tiburcio. (2013). Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science, 8:6, pp. 8490-8501.

A. Landa-Gómez, R. Croche B, S. Márquez-Montero, R. Galvan-Martínez, C. Gaona-Tiburcio, F. Almeraya-Calderón, M.A. Baltazar-Zamora. (2018). Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c= 0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. ECS Transactions, 84:1, 217-227.

ASTM C192/C192M–18–Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2016. www.astm.org

ASTM G 59-97 (2014) – Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org

Miguel Angel Baltazar-Zamora, Sabino Márquez-Montero, Laura Landa-Ruiz, René Croche, Oscar López-Yza. (2020). Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. European Journal of Engineering Research and Science, 5:1, pp. 91-95.

S. Fajardo, D.M. Bastidas, M. Criado, J.M. Bastidas. (2014). Electrochemical study on the corrosion behavior of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides. Electrochimica Acta, 129, pp. 160–170.

Miguel Angel Baltazar-Zamora, José Manuel Mendoza-Rangel, René Croche, Citlalli Gaona-Tiburcio, Cindy Hernández, Luis López, Francisco Olguín, Facundo Almeraya-Calderón. (2019). Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials, 6, pp. 1-12.

S. Feliu, J. A. González, C. Andrade, “ElectrochemicalMethods for On site Determinations of Corrosion Rates Rebars”. Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures, ASTM STP 1276. ASTM, 1996.

ASTM C 876-15 (2015) –Standard Test Method for Corrosion Potentials of Uncoated Reinforcing steel in Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org

H.W. Song, V. Saraswathy. (2007). Corrosion Monitoring of Reinforced Concrete Structures – A Review. International Journal of Electrochemical Science, 2:1, pp. 1-28.

O. Troconis De Rincón et. al., Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, p. 134. Red DURAR. CYTED. Venezuela (1997)

M.A. Baltazar-Zamora, D.M. Bastidas, G. Santiago-Hurtado, J.M. Mendoza-Rangel, C. Gaona-Tiburcio, J.M. Bastidas, F. Almeraya-Calderón. (2019). Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel), 12:23, pp. 1-13.

M.C. García-Alonso, J.A. González, J. Miranda, M.L. Escudero, M.J. Correia, M. Salta, A. Bennani, Corrosion behaviour of innovative stainless steels in mortar. (2007). Cement and Concrete Research, 37:11, pp. 1562-1569.

M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. (2011). Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 33:6, pp. 644–652.

M.A. Baltazar-Zamora, G. Santiago-Hurtado, C. Gaona-Tiburcio et. al. (2012). Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science, 7:1, pp. 588-600.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Baltazar-Zamora, M., Landa-Sánchez, A., Landa-Ruiz, L., Ariza-Figueroa, H., Gallego-Quintana, P., Ramírez-García, A., Croche, R. and Márquez-Montero, S. 2020. Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment. European Journal of Engineering Research and Science. 5, 2 (Feb. 2020), 127-131. DOI:https://doi.org/10.24018/ejers.2020.5.2.1751.

Most read articles by the same author(s)