Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH

##plugins.themes.bootstrap3.article.main##

  •   Miguel Angel Baltazar-Zamora

  •   Laura Landa-Ruiz

  •   Yazmin Rivera

  •   René Croche

Abstract

This work presents the electrochemical evaluation of bars of Galvanized Steel and AISI 1018 with 3/8” and ½” of diameter, this bars are commonly used for the construction of elements based on Soils Mechanically Reinforced (SMR), the bars were buried in a fine soil predominant in the region of Xalapa City, Ver., México, soil classified in the USCS (Unified Soil Classification System) as a high plasticity silt (MH). Corrosion evaluation was conducted by monitoring the corrosion potential Ecorr and corrosion rate, Icorr, using techniques half-cell potential according to the standard ASTM C-876-15 and Linear Polarization Resistance (LPR), respectively. The experimental setup simulates the real conditions when the steel is used as reinforcement in structures of SMR, where they remain buried throughout the useful life of the structure. The results of the first 110 days of exposure show that the Galvanized Steel bars have a better corrosion performance compared to the AISI 1018 steel regardless of their diameter.


Keywords: Corrosion, AISI 1018, Galvanized Steel, Soil type MH

References

V. Elias, K.L. Fishman, B.R. Cristopher and R.R. Berg. (2009). Corrosion/Degradation of Soil Reinforcements for Mechanically Stabilized Earth Walls and Reinforced Soil Slopes. U.S. Department of Transportation Publication No. FHWA-NHI-09-087, Federal Highway Administration, Washington D.C., U.S.A.

O. Ojeda-Farías, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. (2018). Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, 8:2, pp. 194-208.

M. Singh, A. Mittal. (2014). A Review On the Soil Stabilization With Waste Materials. International Journal of Engineering Research and Applications. 4:2, pp. 11-16.

G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L., P. Zambrano Robledo, C. Gaona-Tiburcio. (2013). Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science, 8:6, pp. 8490-8501.

M.A. Baltazar-Zamora, D.M. Bastidas, G. Santiago-Hurtado, J.M. Mendoza-Rangel, C. Gaona-Tiburcio, J.M. Bastidas, F. Almeraya-Calderón. (2019). Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel), 12:23, pp. 1-13.

O. Troconis de Rincón et. al., (2016). Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion, 72:6, pp. 824-833.

D.M. Bastidas, M. Criado, S. Fajardo, A. La Iglesia, J.M. Bastidas. (2015). Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides. Cement and Concrete Composites, 61, pp. 1-6.

Miguel Angel Baltazar-Zamora, Abigail Landa-Sánchez, Laura Landa-Ruiz, Hilda Ariza-Figueroa, Pedro Gallego-Quintana, Aldo Ramírez-García, René Croche, Sabino Márquez-Montero. (2020). Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment. European Journal of Engineering Research and Science, 5:2, pp. 127-131.

W. Raczkiewicz, A. Wójcicki. (2020). Temperature Impact on the Assessment of Reinforcement Corrosion Risk in Concrete by Galvanostatic Pulse Method. Applied Sciences, 10:3, pp. 1-13.

M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. (2011). Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 33, pp. 644-652.

Miguel Angel Baltazar-Zamora, Sabino Márquez-Montero, Laura Landa-Ruiz, René Croche, Oscar López-Yza. (2020). Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. European Journal of Engineering Research and Science, 5:1, pp. 91-95.

D. Johnston. (2005). Corrosion Monitoring of Hot Springs VSL Mechanically Stabilized Earth Wall. Report No. SD2004-02-F, South Dakota Department of Transportation, Office of Research, Pierre, SD, pp., 14.

R.A. Gladstone, P.L. Anderson, K.L. Fishman, J.L. Withiam. (2006). Durability of Galvanized Soil reinforcement: 30 Years + of Experience with MSE. Journal of the Transportation Research Board, No. 1975, pp. 49-59.

NMX-C-416 ONNCCE-2003- Muestreo de estructuras terreas y métodos de prueba. ONNCCE S.C., México, (2003).

B.M. Das. Principio de Ingeniería de Cimentaciones. pp. 68-71. Ed. Thomson, México, (2006):

M.MMP.1.04/03 Métodos de muestreo y prueba de materiales. Suelos y materiales para terracerías. Contenido de Agua. S.C.T.,México, (2004).

M.A. Baltazar-Zamora et. al. (2012). Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 7:4, pp. 2997-3007.

M.A. Baltazar-Zamora, G. Santiago-Hurtado, C. Gaona-Tiburcio et. al. (2012). Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science, 7:1, pp. 588-600.

ASTM C 876-15 (2015) –Standard Test Method for Corrosion Potentials of Uncoated Reinforcing steel in Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org

G. Santiago-Hurtado, M.A. Baltazar-Zamora, R. Galván-Martínez, L. D. López L, F. Zapata G, P- Zambrano, C. Gaona-Tiburcio, F. Almeraya-Calderón. (2016). Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science, 11:6, pp. 4850-4864.

M.A. Baltazar-Zamora, G. Santiago-Hurtado, V.M. Moreno L, R. Croche B, M. de la Garza, F. Estupiñan L, P. Zambrano R., C. Gaona-Tiburcio. (2016). Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science, 11:12, pp. 10306-10319.

G. Santiago-Hurtado, M.A. Baltazar-Zamora, J. Olguín-Coca, L. D. López L, R. Galván-Martínez, A. Ríos-Juárez, C. Gaona-Tiburcio, F. Almeraya-Calderón. (2016). Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science, 11:4, pp. 2994-3006.

H.W. Song, V. Saraswathy. (2007). Corrosion Monitoring of Reinforced Concrete Structures – A Review. International Journal of Electrochemical Science, 2:1, pp. 1-28.

ASTM G 59-97 (2014) – Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org

O. Troconis De Rincón et. al., Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, p. 134. Red DURAR. CYTED. Venezuela (1997)

Miguel Angel Baltazar-Zamora, José Manuel Mendoza-Rangel, René Croche, Citlalli Gaona-Tiburcio, Cindy Hernández, Luis López, Francisco Olguín, Facundo Almeraya-Calderón. (2019). Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials, 6, pp. 1-12.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Baltazar-Zamora, M., Landa-Ruiz, L., Rivera, Y. and Croche, R. 2020. Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. European Journal of Engineering Research and Science. 5, 3 (Mar. 2020), 259-263. DOI:https://doi.org/10.24018/ejers.2020.5.3.1789.