Introduction into the Extra Geometry of the Three–Dimensional Space I

##plugins.themes.bootstrap3.article.main##

  •   Istvan Szalay

  •   B. Szalay

Abstract

Using the theory of exploded numbers by the axiom–systems of real numbers and euclidean geometry, we introduce a geometry in the three–dimensional space which is different from the euclidean-, Bolyai – Lobachevsky- and spherical geometries. In this part the concept of extra-line and extra parallelism are detailed.



References

I. Szalay, Exploded and compressed numbers, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis (AMAPN),18 (2002), 33-51, www.emis.de/journals

I. Szalay, Explosion and compression by numbers, International Journal of Applied Mathematics Vol. 18. No.1 (2005), 33 – 60.

I. Szalay: Exploded and compressed numbers (Enlargement of universe, Parallel Universes, Extra Geometry) LAMBERT Academic Publishing, Saarbrucken (Germany), 2016.

I. Szalay, Individual Universes of the Multiverse, European Journal of Engeneering Research and Science (EJERS), Vol. 2. No. 9 September 2017, 17-26.

sites.math.washington.edu/~hart/m524/realprop.pdf

Edvard D. Gughan: Introduction to Analysis, Books-Cole, Pacific Grove, 1988

wikipedia.org./wiki/Euclidean geometry (accessed: on 6th April 2020)

wikipedia.org/wiki/Hyperbolic geometry (accessed: on 6th April 2020)

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Szalay, I. and Szalay, B. 2020. Introduction into the Extra Geometry of the Three–Dimensional Space I. European Journal of Engineering Research and Science. 5, 5 (May 2020), 538-544. DOI:https://doi.org/10.24018/ejers.2020.5.5.1856.