Modelling of Ventilation Rate and Heating Rate using Multi-Module Fuzzy Control System for A Greenhouse

##plugins.themes.bootstrap3.article.main##

  •   Jamilu Yau

  •   Ji JianWei

  •   Hui Wang

  •   Olubakinde Eniola

  •   Folahan Peter Ibitoye

Abstract

The implementation of Ventilation rate and Heating rate can save energy and reduce cost of production. In previous studies, ventilation rates and heating rates were calculated based on mass and energy balance but they are mainly influenced by several factors. In order to check for the effectiveness and applicability of greenhouse ventilation rate and heating rate, we study a multi-module fuzzy control method and use fuzzy logic controllers to control the coordination of a greenhouse heating and ventilation systems. The complexity is reduced by using fuzzy tool in matlab-simulink environment which enables a quick design. The experimental data showed that the new multi-module fuzzy control reduced temperature and humidity fluctuations and maintained temperature and humidity closer to the desired temperature and humidity; this method can be easily used to control other equipment in the greenhouse.


Keywords: Ventilation, Multi-Module, Heating Rate, Temperature and Humidity

References

Coelho, J., de Moura Oliveira, P., Cunha, J., 2005. Greenhouse air temperature predictive control using the particle swarm optimisation algorithm. Comput. Electron. Agric. 49, 330–344.

Ghoumari, M., Tantau, H., Megas, D., Serrano, J., 2002. Real time nonlinear constrained model predictive control of a greenhouse. In: Proceedings of 15th IFAC World Congress, Barcelona, Spain.

Sigrimis, N., Anastasiou, A., Rerras, N., Sigrimis, N., & King, R. E. (2000). Energy saving in greenhouses using temperature integration: A simulation survey. Comput. Electron. Agric., 26(3), 321-341. https://doi.org/10.1016/S0168-1699(00)00083-1

Parra, J. P., Baeza, E. J., Montero, J. I., & Bailey, B. J. (2004). Natural ventilation of parral greenhouses. Biosyst. Eng., 87 (3), 355-366.

Wang, S., & Boulard, T. (2000). Predicting the microclimate in a naturally ventilated plastic house in a Mediterranean climate. J. Agric. Eng. Res., 75(1), 27-38.

Baeza, E. J., Parra, J. P., Montero, J. I., Bailey, B. J., Lopez, J. C., & Gazquez, J. C. (2009). Analysis of the role of sidewall vents on buoy-ancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst. Eng., 104 (1), 86-96. https://doi.org/10.1016/j.biosystemseng.2009.04.008

Feki, E., Chouchaine, A., & Mami, A. (2012). Thermal control of a greenhouse by variation in ventilation rate using a fuzzy parallel dis-tributed compensation controller with an rst regulator in each rule. American J. Appl. Sci., 9(7), 979-987.

Chen, Y., & Dai, W. (2010). Intelligent control technology for natural ventilation used in greenhouse. Proc. 3rd Int. Conf. on Computer and Computing Technlogies in Agriculture. 317.

Salgado, P., & Cunha, J. B. (2005). Greenhouse climate hierarchical fuzzy modelling. Control Eng. Pract., 13(5), 613-628.

Vera, M. A., Fernandez, J. C., Natale, L. F., Lafont, F., Balmat, J. F., & Esparza, J. I. (2016). Temperature control in a miso greenhouse by inverting its fuzzy model. Comput. Electron. Agric., 124, 168-174.

Azaza, M., Tanougast, C., Fabrizio, E., & Mami, A. (2016). Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring. ISA Trans., 61, 297-307.

Revathi, S., & Sivakumaran, N. (2016). Fuzzy based temperature control of greenhouse. IFAC-PapersOnLine, 49(1), 549-554. https://doi.org/10.1016/j.ifacol.2016.03.112.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Yau, J., JianWei, J., Wang, H., Eniola, O. and Ibitoye, F. 2020. Modelling of Ventilation Rate and Heating Rate using Multi-Module Fuzzy Control System for A Greenhouse. European Journal of Engineering Research and Science. 5, 7 (Jul. 2020), 800-806. DOI:https://doi.org/10.24018/ejers.2020.5.7.2015.