Spatial Limit of CFD Model at Nanometer Scale Geometry: Part I: Capillary Flow

##plugins.themes.bootstrap3.article.main##

  •   Simon Mark

  •   Harry Boyer

Abstract

Numerical simulation using computational fluid dynamics has been studied broadly in various fields of applications. Along with the advancement in new technology especially those employing micro or nanoscale geometries or lab-on-chip devices, it is important to understand the efficiency of such numerical models at small geometrical scales. To access any potential error in numerical simulation using CFD, in the present work we report the investigation of capillary driven passive flow inside a channel of varying geometry. The potential error in the results of simulation at a very small scale is accessed by comparing it with the results of theoretical analysis. Hence, establishes a spatial limit of the continuum model for simulation in related applications. This gives new insight to the further study on CFD at nanometers scale geometry.


Keywords: CFD, Nanometer Scale, Capillary Flow

References

Aziz, M. A., Abdullah, M. Z., Khor, C. Y., Jalar, A., & Ani, F. C. (2014). CFD modeling of pin shape effects on capillary flow during wave soldering. International Journal of Heat and Mass Transfer, 72, 400-410.

Taha, T., & Cui, Z. F. (2006). CFD modelling of slug flow inside square capillaries. Chemical Engineering Science, 61(2), 665-675.

Silva, G., Leal, N., & Semiao, V. (2010). Critical pressure for capillary valves in a Lab-on-a-Disk: CFD and flow visualization. Computers & structures, 88(23-24), 1300-1309.

Jayakumar, J. S., Mahajani, S. M., Mandal, J. C., Vijayan, P. K., & Bhoi, R. (2008). Experimental and CFD estimation of heat transfer in helically coiled heat exchangers. Chemical engineering research and design, 86(3), 221-232.

Alizadehdakhel, A., Rahimi, M., & Alsairafi, A. A. (2010). CFD modeling of flow and heat transfer in a thermosyphon. International Communications in Heat and Mass Transfer, 37(3), 312-318.

Deb, D., Poudel, S., & Chakrabarti, A. (2017). Numerical Simulation of Hydromagnetic Convection in a Lid-driven Cavity Containing a Heat Conducting Elliptical Obstacle with Joule Heating. International Journal of Engineering Research and Technology, 6(08).

Yadav, A. S., & Bhagoria, J. L. (2013). Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach. Renewable and Sustainable Energy Reviews, 23, 60-79.

Ghale, Z. Y., Haghshenasfard, M., & Esfahany, M. N. (2015). Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models. International Communications in Heat and Mass Transfer, 68, 122-129.

Banerjee, R. (2007). A numerical study of combined heat and mass transfer in an inclined channel using the VOF multiphase model. Numerical Heat Transfer, Part A: Applications, 52(2), 163-183.

Li, H., Vasquez, S. A., & Spicka, P. (2010, January). Advanced computational modeling of multiphase boiling flow and heat transfer. In ASME International Mechanical Engineering Congress and Exposition (Vol. 44441, pp. 1681-1692).

Li, H., Vasquez, S. A., Punekar, H., & Muralikrishnan, R. (2011, January). Prediction of boiling and critical heat flux using an eulerian multiphase boiling model. In ASME International Mechanical Engineering Congress and Exposition (Vol. 54921, pp. 463-476).

Zou, A., Poudel, S., Raut, S. P., & Maroo, S. C. (2019). Pool boiling coupled with nanoscale evaporation using buried nanochannels. Langmuir, 35(39), 12689-12693.

Bastakoti, D., Zhang, H., Li, D., Cai, W., & Li, F. (2018). An overview on the developing trend of pulsating heat pipe and its performance. Applied Thermal Engineering, 141, 305-332.

Moraveji, M. K., & Ardehali, R. M. (2013). CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink. International Communications in Heat and Mass Transfer, 44, 157-164.

Moraveji, M. K., Ardehali, R. M., & Ijam, A. (2013). CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink. International Communications in Heat and Mass Transfer, 40, 58-66.

Chien, N. B., Choi, K. I., & Oh, J. T. (2015). Experiment and CFD simulation of boiling heat transfer coefficient of R410A in minichannels. International Journal of Air-Conditioning and Refrigeration, 23(04), 1550032.

Minqiang, P. A. N., Dehuai, Z., Yong, T., & Dongqing, C. (2009). CFD-based study of velocity distribution among multiple parallel microchannels. J. Comput, 4(11), 1133-1138.

Lan, W., Li, S., Wang, Y., & Luo, G. (2014). CFD simulation of droplet formation in microchannels by a modified level set method. Industrial & Engineering Chemistry Research, 53(12), 4913-4921.

Zhang, R., Ikoma, Y., & Motooka, T. (2010). Negative capillary-pressure-induced cavitation probability in nanochannels. Nanotechnology, 21(10), 105706.

Sun, J., He, Y. L., Tao, W. Q., Rose, J. W., & Wang, H. S. (2012). Multi-scale study of liquid flow in micro/nanochannels: effects of surface wettability and topology. Microfluidics and nanofluidics, 12(6), 991-1008.

Poudel, S., Zou, A., & Maroo, S. C. (2019). Wicking in Cross-Connected Buried Nanochannels. The Journal of Physical Chemistry C, 123(38), 23529-23534.

Poudel, S., Zou, A., & Maroo, S. C. (2020). Evaporation Dynamics in Buried Nanochannels with Micropores. Langmuir, 36(27), 7801-7807. DOI: 10.1021/acs.langmuir.0c00777

Vangelooven, J., Malsche, W. D., Detobel, F., Gardeniers, H., & Desmet, G. (2009). High− Speed Shear-Driven Flows Through Microstructured 1D-Nanochannels. Analytical chemistry, 81(3), 943-952.

Fluent, A. N. S. Y. S. (2015). Ansys fluent. Academic Research. Release, 14.

Washburn, E. W. (1921). The dynamics of capillary flow. Physical review, 17(3), 273.

Lucas, R. (1918). Rate of capillary ascension of liquids. Kolloid Z, 23(15), 15-22.

Chengara, A., Nikolov, A. D., Wasan, D. T., Trokhymchuk, A., & Henderson, D. (2004). Spreading of nanofluids driven by the structural disjoining pressure gradient. Journal of colloid and interface science, 280(1), 192-201.

Bergeron, V., & Radke, C. J. (1992). Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir, 8(12), 3020-3026.

Klass, D. L., & Martinek, T. W. (1967). Electroviscous fluids. I. Rheological properties. Journal of Applied physics, 38(1), 67-74.

Geun Kim, B., Sik Lee, J., Han, M., & Park, S. (2006). A molecular dynamics study on stability and thermophysical properties of nanoscale liquid threads. Nanoscale and microscale thermophysical engineering, 10(3), 283-304.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Mark, S. and Boyer, H. 2020. Spatial Limit of CFD Model at Nanometer Scale Geometry: Part I: Capillary Flow. European Journal of Engineering Research and Science. 5, 7 (Jul. 2020), 795-799. DOI:https://doi.org/10.24018/ejers.2020.5.7.2020.