Sustainability and Environmental Awareness in the Ceramic Industry


  •   Anita Terjek

  •   Annamária Dudás


The choice of building materials is primarily based on technical, economic and aesthetic aspects, but environment impact cannot be ignored. The objective of this research was to assess the factors in the product development aiming to improve slipperiness of ceramic tile. Firing time and temperature representing 8 manufacturing scenarios were examined taking into account the change in glazing. Laboratory slip resistance and surface roughness tests were conducted. While optimizing surface properties, environmental performance of ceramic tile was investigated with the analysis of Environmental Product Declarations (EPD) focusing on manufacturing and maintenance of its life cycle. This methodology supports manufacturers to follow sustainability and to optimize design decisions. Referring to the Life Cycle Assessment of a building, the effect of a complex correlation system reveals a combination of technical, economic and environmental assessment.

Keywords: Ceramic Tile, Slip Resistance, Life Cycle Assessment, Sustainability


Ros-Dosdá, T., Celades, I., Vilalta, L., Fullana-i-Palmer, P., Monfort, E. (2019): Environmental comparison of indoor floor coverings. Science of The Total Environment 693, 133519

Akadiri, P.O. (2015): Understanding barriers affecting the selection of sustainable materials in building projects. J. Build. Eng. 4, pp. 86–93.

COM/2014/445 final (2014): Resource Efficiency Opportunities in the Building Sector. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Available:

Häfliger, I.-F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M.R.M., Habert, G. (2017): Buildings environmental impacts' sensitivity related to LCA modelling choices of construction materials. J. Clean. Prod. 156, pp. 805–816.

Zabalza, I., Valero, A., Aranda, A. (2011): Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the ecoefficiency improvement potential. Build. Environ. 46, pp. 1133–1140.

Lányi, E. (2009): Fenntartható és energiatudatos építés, Építőanyag 61. évf. 1. szám

Sangwan K. S., Choudhary K., Batra C. (2017): Environmental impact assessment of a ceramic tile supply chain – a case study, International Journal of Sustainable Engineering,

Ibáñez-Forés, V., Pacheco-Blanco, B., Capuz-Rizo, S.F., Bovea, M.D. (2016): Environmental Product Declarations: exploring their evolution and the factors affecting their demand in Europe. J. Clean. Prod. 116, pp. 157–169.

Ros-Dosdá, T., Fullana-i-Palmer, P., Mezquita, A., Masoni, P., Monfort, E., (2018b): How can the European ceramic tile industry meet the EU's low-carbon targets? A life cycle perspective, J. Clean. Prod.,

Mezquita, A., Monfort, E., Ferrer, S., Gabaldón-Estevan, D. (2017): How to reduce energy and water consumption in the preparation of raw materials for ceramic tile manufacturing: Dry versus wet route. J. Clean. Prod.

COM (2011) 112 final (2011): A Roadmap for moving to a competitive low carbon economy in 2050. Brussels, Belgium: European Commission. Available:

305/2011/EU (CPR) Regulation of the European Parliament and of the Council of laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

253/1997 (XII.20.) Government Decree about the National Requirements of Building and Town Planning (OTÉK)

Meex E, Hollberg A, Knapen E, Hildebrand L, Verbeeck G. (2018): Requirements for applying lca-based environmental impact assessment tools in the early stages of building design, Building and Environment,

Garcia-Muiña, F.E.; González-Sánchez, R.; Ferrari, A.M.; Volpi, L.; Pini, M.; Siligardi, C.; Settembre-Blundo, D. (2019): Identifying the Equilibrium Point between Sustainability Goals and Circular Economy Practices in an Industry 4.0 Manufacturing Context Using Eco-Design. Soc. Sci., 8, 241.

Gusmerotti, N. M., Testa F., Corsini F., Pretner G., Iraldo F. (2019): Drivers and approaches to the circular economy in manufacturing firms. J. Clean. Prod. 230, pp. 314–27.

Nasir, M. H. A., Genovese, A., Acquaye, A. A., Koh, S. C. L., Yamoah, F. (2017): Comparing linear and circular supply chains: A case study from the construction industry. International Journal of Production Economics 183, pp. 443–57

Schroeder, P., Anggraeni K., Weber U. (2019): The relevance of circular economy practices to the sustainable development goals. Journal of Industrial Ecology 23, pp. 77–95.

Hungarian Business Council for Sustainable Development, BCSDH (2019): Business in circulation Report on the situation of the circular economy in Hungary. Available:

Fiksel, J., Lal R. (2018): Transforming waste into resources for the Indian economy. Environmental Development 26: pp. 123–28.

Durãoa, V., Silvestre, J. D., Mateus, R., de Britoa, J. (2020): Assessment and communication of the environmental performance of construction products in Europe: Comparison between PEF and EN 15804 compliant EPD schemes, Resources, Conservation & Recycling 156. 104703,

Almeida, M.I., Dias, A.C., Demertzi, M., Arroja, L. (2016): Environmental profile of ceramic tiles and their potential for improvement. J. Clean. Prod. 131, pp. 583–593.

[23] Medgyasszay, P., Szalay, Zs., V. Horn, V.: Környezetbarát építés, egyetemi jegyzet, BME, Építőanyagok és Magasépítés Tanszék

Basbagill, J., Flager, F., Lepech,M., Fischer,M. (2013): Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build. Environ. 60, pp. 81–92.

Iribarren, D., Marvuglia, A., Hild, P., Guiton, M., Popovici, E., Benetto, E. (2015): Life cycle assessment and data envelopment analysis approach for the selection of building components according to their environmental impact efficiency: a case study for external walls. J. Clean. Prod. 87, pp. 707–716.

Zabalza Bribián, I., Aranda Usón, A., Scarpellini, S. (2009): Life cycle assessment in buildings: state-of-the-art and simplified LCA methodology as a complement for building certification. Build. Environ. 44, pp. 2510–2520.

Balaguera, A., Carvajal, G.I., Albertí, J., Fullana-i-Palmer, P. (2018): Life cycle assessment of road construction alternative materials: a literature review. Resour. Conserv. Recycl. 132, pp. 37–48.

Chang, D., Lee, C.K.M., Chen, C.-H. (2014): Review of life cycle assessment towards sustainable product development. J. Clean. Prod. 83, pp. 48–60.

Fazeni, K., Lindorfer, J., Prammer, H. (2014.): Methodological advancements in life cycle process design: a preliminary outlook. Resour. Conserv. Recycl. 92, pp. 66–77.

Ortiz, O., Castells, F., Sonnemann, G. (2009): Sustainability in the construction industry: a review of recent developments based on LCA. Constr. Build. Mater. 23, pp. 28–39.

Puig, R., Kiliç, E., Navarro, A., Albertí, J., Chacón, L., Fullana-i-Palmer, P. (2017): Inventory analysis and carbon footprint of coastland-hotel services: a Spanish case study. Sci. Total Environ. 595, pp. 244–254.

Gazulla Santos, C. (2012): Declaraciones ambientales de producto instrumento para la mejora de productos. PhD thesis. UNESCO Chair Life Cycle Clim. Chang. ESCI-UPF Inst. Ciència i Tecnol. Ambient. Dr. en Ciència i Tecnol. Ambient. Univ. Autònoma Barcelona Available: nce=1&isAllowed=y

Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R.; de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., Bruijn, H. de, Duin, R. van, Huijbregts, M.A.J. (2002): Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht

Klöpffer, W., Grahl, B. (2009): Ökobilanz (LCA): Ein leitfaden für ausbildung und beruf. John Wiley & Sons.

Tan, R.R., Culaba, A. (2002): Environmental life-cycle assessment: a tool for public and corporate policy development. La Salle Univ. Manila, Available:

Tóthné Szita, K. (2008): Életciklus-elemzés, életciklus hatásértékelés, Miskolci Egyetem, Gazdaságtudományi Kar

EN ISO 14040: Environmental management. Life cycle assessment. Principles and framework

Bovea, M.D., Díaz-Albo, E., Gallardo, A., Colomer, F.J., Serrano, J. (2010): Environmental performance of ceramic tiles: Improvement proposals. Mater. Des. 31, pp. 35–41.

Ibáñez-Forés, V., Bovea, M.D., Azapagic, A. (2013): Assessing the sustainability of Best Available Techniques (BAT): methodology and application in the ceramic tiles industry. J. Clean. Prod. 51, pp. 162–176.

Bocken, N.M.P., Short, S.W., Rana, P., Evans, S. (2014): A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 65, pp. 42–56.

Frej, A. (2005): Green Office Buildings: a Practical Guide to Development. ULI - The Urban Land Institute, Washington D.C., USA.

Rademaekers, K.A., Asaad, S.S.Z., Berg, J. (2011): Study on the competitiveness of the european companies and resource efficiency. ECORYS. Rotterdam, Netherlands

Fullana-i-Palmer, P. (2011): Life cycle assessment of ceramic tiles. European Parliament Ceramics Forum debate. Brussels, Belgium

Almeida, M.I.A, Demertzi, M., Dias, A.C., Arroja, L. (2013): Environmental product declaration: for ceramic tile, Energy for Sustainability, Coimbra, Portugal

Bovea, M.D., Saura, U., JL. Ferrero, Giner, J. (2007): Cradle-to-gate study of red clay for use in the ceramic industry. Int J LCA. 12(6) pp. 439–47.

Pini, M., Ferrari ,A. M., Gamberini, R., Neri, P., Rimini, B. (2014): Life cycle assessment of a large, thin ceramic tile with advantageous technological properties, Int J Life Cycle Assess 19, pp.1567–1580,

Benveniste, G., Gazulla, C., Fullana, P., Celades, I., Ros, T., Zaera, V., Godes, B. (2011): Life cycle assessment and product category rules for the construction products. The floor and wall tiles sector case study. Inf. la Construcción 63, pp. 71–81 (in Spanish).

Ibáñez-Forés, V., Bovea, M.-D., Simó, A. (2011): Life cycle assessment of ceramic tiles. Environmental and statistical analysis. Int. J. Life Cycle Assess. 16, pp. 916–928.

Quinteiro, P., Almeida, M., Dias, A.C., Araújo, A., Arroja, L. (2014): The carbon footprint of ceramic products, in: Muthu, S.S. (Ed.), Assessment of Carbon Footprint in Different Industrial Sectors. Volume 1. Springer Publications, pp. 113–150.

Nicoletti, G.N., Notarnicola, B., Tassielli, G. (2002): Comparative life cycle assessment of flooring materials: ceramic versus marble tiles. J. Clean. Prod. 10(3), pp. 283–296.

Paños, Y. (2018): Why is sustainable ceramic production important? Available:

Péter, Gy. (1982): Kerámiaipari kemencék, Műszaki Könyvkiadó, Budapest

EN 14411: Ceramic tiles. Definition, classification, characteristics, assessment and verification of constancy of performance and marking

Gömze, A. L., Liszátzné Helvei, Á., Simonné Odler, A., Szabó, M. (2001): Gyártás-technológia, termékek, In. SZABÓ M. (Ed.) Kerámiaipari évkönyv I. ÉTK Kiadó Budapest, pp. 30-51.

Russo, M. (2012): Local Sustainability and Competitiveness: The Case of the Ceramic Tile Industry, Available:

Monfort, E., Mezquita, A., Granel, R., Vaquer, E., Escrig, A., Miralles, A., Zaera, V. (2010): Analysis of energy consumption and carbon dioxide emissions in ceramic tile manufacture. Boletín la Soc. Española Cerámica y Vidr. 49, pp. 303–310. Available:

Ros-Dosdá, T., Celades, I., Monfort, E., Fullana-i-Palmer, P. (2018a): Environmental profile of Spanish porcelain stoneware tiles. Int. J. Life Cycle Assess. 1–19. pp. 1562–1580.

EIPPCB (2007): Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques (BATs) in the Ceramic Manufacturing Industry. European Commission, Directorate-General JRC, Joint Research Centre. Institute for Prospective Technological Studies (Sevilla). Technologies for Sustainable Development. European IPPC Bureau

Cerame Unie (2012): The Ceramic Industry Roadmap: paving the way to 2050. Available:

Panigrahi, R. (2017): Incidence of Green Accounting on Competitiveness: Empirical Evidences from Mining and Quarrying Sector. In Business Analytics and Cyber Security Management in Organizations. Hershey: IGI Global, pp. 270–78.

Terjék A., Józsa Zs. (2017): Comparative analysis of surface properties for assessing slip resistance of glazed ceramic tiles, In. Turan S., Kara A., Balázsi Cs., Balázsi K. (Eds.) 15th Conference & Exhibition of the European Ceramic Society, Budapest, Hungary, ISBN: 9789634540946

CEN/TS 16165: Determination of slip resistance of pedestrian surfaces - Methods of evaluation

EN ISO 4288: Geometrical Product Specifications (GPS). Surface texture: Profile method. Rules and procedures for the assessment of surface texture

Manzini, R., Noci, G., Ostinelli, M., Pizzurno, E. (2006): Assessing Environmental Product Declaration opportunities: a reference framework. Bus. Strategy Environ. 15 (2), pp. 118-134.

EN 17160: Product category rules for ceramic tiles

EN 15804: Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products

European Commission (2013): Flash Eurobarometer 367 Survey on the Attitudes of Europeans towards Building the Single Market for Green Products (Brussels) Available:

Anand, C.K., Amor, B. (2017): Recent developments, future challenges and new research directions in LCA of buildings: a critical review. Renew. Sust. Energ. Rev. 67, pp. 408–416.

Passer, A., Lasvaux, S., Allacker, K., De Lathauwer, D., Spirinckx, C., Wittstock, B., Kellenberger, D., Gschösser, F., Wall, J., Wallbaum, H. (2015): Environmental product declarations entering the building sector: critical reflections based on 5 to 10 years’ experience in different European countries. Int. J. Life Cycle Assess. 20, pp. 1199–1212.

Bovea, M.D., Ibáñez-Forés, V., Agustí-Juan, I. (2014): Environmental product declaration (EPD) labelling of construction and building materials. Eco-efficient Constr. Build.Mater, pp. 125–150

Terjék, A., Dudás, A. (2018): Ceramic Floor Slipperiness Classification – A new approach for assessing slip resistance of ceramic tiles, Construction and Building Materials, Vol 164 pp. 809–819

Terjék, A. (2016): Multiple aspects of comparing surface properties of ceramic tiles regarding slip resistance, Applied Mechanics and Materials, Vol. 861, pp. 129-136,

Terjék, A., Józsa, Zs. (2015): Analysis of surface properties determining slip resistance of ceramic tiles, Periodica Polytechnica - Civil Engineering 59:(3) pp. 393-404.

Jönsson, Å. (1999): Including the use phase in LCA of floor coverings. Int. J. Life Cycle Assess. 4, pp.321–328.

Nebel, B., Zimmer, B.,Wegener, G., 2006. Life cycle assessment of wood floor coverings-a representative study for the German flooring industry. Int. J. Life Cycle Assess. 11, pp.172–182.

Timellini, G., Palmonari, C., Fregni, A.: Ceramic Floor and Wall Tile: An Ecological Building Material,

Kronberg, T., Hupa, L. (2019): Melting behaviour of raw glazes. Journal of the European Ceramic Society Vol 39, Issue 14, November 2019, pp. 4404-4416

Escrig, A., García-Ten, J., Mezquita, A., Ferrer S., Cantavella, V., E. Monfort, E. (2016): Estimation of the influence of the ceramic composition on thermal energy consumption. Qualicer

Minne, E., Crittenden, J.C. (2014): Impact of maintenance on life cycle impact and cost assessment for residential flooring options. The International Journal of Life Cycle Assessment pp.36-45.

Martínez-Rocamora, A., Solís-Guzmán, J., Marrero, M. (2018): Carbon Footprint of Utility Consumption and Cleaning Tasks in Buildings. Environmental Carbon Footprints Industrial Case Studies. pp. 229-258


Download data is not yet available.


How to Cite
Terjek, A. and Dudás, A. 2020. Sustainability and Environmental Awareness in the Ceramic Industry. European Journal of Engineering and Technology Research. 5, 8 (Aug. 2020), 970-979. DOI: