Design of Potential SARS-CoV-2 Inhibitor


  •   F. J. Amaku

  •   I. E. Otuokere

  •   K. K. Igwe

  •   O. V. Ikpeazu


This computational study comprises of pharmacophore-base virtual screening of the ZINC database, molecular docking of predicted ligands (pharmacophore agent) against the target protein, SARS-CoV-2 (PDB ID: 5r7y) and the prediction of ADMET descriptors using Swiss ADME and PROTOX-II online web servers.  Meanwhile,  remdesivir, ZINC72392503, ZINC72809903, ZINC06560017, ZINC76101700, ZINC88423098 and ZINC91600695 had a docking scores of -2.0 Kcal/mol, -6.7 Kcal/mol, -6.4 Kcal/mol, -6.0 Kcal/mol, -6.0 Kcal/mol, -6.0 Kcal/mol and-6.0 Kcal/mol respectively.  Meanwhile, ZINC72392503 was selected as the lead molecule and was observed to interact with LUE 27, THR 25, CYS 145, THR 26, SER 46, GLY 143, ASN 142, HIS 163, HIS 41, MET 165, GLU 166, ARG 188, GLN 189, HIS 41, MET 49, SER 46 amino acids.  The ADME descriptor revealed that the lead molecule was soluble, druggable, void of drug-drug interaction that may inhibit essential enzymatic reaction and was noticed to fall into PROTOX-II toxicity class 3.  The lead molecule showed a good affinity for the target protein of SARS-CoV-2, hence, may have a physiological implication that can inhibit a protein responsible for the replication of SARS-CoV-2.

Keywords: Remdesivir, Virtual Screening, Molecular Docking, ADMET


Guan, W., et al., China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease, 2019: p. 1708-1720.

Wang, D., et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 2020. 323(11): p. 1061-1069.

Guo, Y.-R., et al., The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 2020. 7(1): p. 1-10.

Rothe, C., et al., Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New England Journal of Medicine, 2020. 382(10): p. 970-971.

Huang, C., et al., Wei Y1. Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J and Cao B, 2020: p. 497-506.

Gautret, P., et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-ran-Потенциальная иммунопрофилактика COVID-19 у групп высокого риска инфицирования domized clinical trial. Int J Antimicrob Agents, 2020. 105949.

Guastalegname, M. and A. Vallone, Could chloroquine/hydroxychloroquine be harmful in coronavirus disease 2019 (COVID-19) treatment? Clinical Infectious Diseases, 2020.

Tailor, R., et al., A case of severe hydroxychloroquine-induced retinal toxicity in a patient with recent onset of renal impairment: a review of the literature on the use of hydroxychloroquine in renal impairment. Case Rep Ophthalmol Med, 2012. 2012: p. 182747.

Khan, S.A., et al., Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 2020: p. 1-10.

Wu, F., et al., A new coronavirus associated with human respiratory disease in China. Nature, 2020. 579(7798): p. 265-269.

Salman, S., et al., Optimal antimalarial dose regimens for chloroquine in pregnancy based on population pharmacokinetic modelling. International Journal of Antimicrobial Agents, 2017. 50(4): p. 542-551.

Aanouz, I., et al., Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure and Dynamics, 2020: p. 1-9.

Chorin, E., et al., The QT interval in patients with SARS-CoV-2 infection treated with hydroxychloroquine/azithromycin. MedRxiv, 2020.

Morris, G.M., et al., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 1998. 19(14): p. 1639-1662.

Pettersen, E.F., et al., UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 2004. 25(13): p. 1605-1612.

Koes, D.R. and C.J. Camacho, ZINCPharmer: pharmacophore search of the ZINC database. Nucleic acids research, 2012. 40(W1): p. W409-W414.

Hanwell, M.D., et al., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 2012. 4(1): p. 17.

Monteiro, A., M. Scotti, and L. Scotti. Molecular docking of fructose-derived nucleoside analogs against reverse transcriptase of HIV-1. in Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition. 2019. MDPI.

Keiser, M.J., et al., Relating protein pharmacology by ligand chemistry. Nature biotechnology, 2007. 25(2): p. 197-206.

Gfeller, D., et al., SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic acids research, 2014. 42(W1): p. W32-W38.

Gaussian09, R.A., M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Gonzalez, J.A. Pople, Gaussian 09, Revision E.01, Gaussian, Inc, Wallingford, CT, 2004. Inc., Wallingford CT, 2009. 121: p. 150-166.

Becke, A.D., Real-space post-Hartree–Fock correlation models. The Journal of chemical physics, 2005. 122(6): p. 064101.

Koopmans, T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica, 1934. 1(1-6): p. 104-113.

Ayers, P.W. and M. Levy, Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity”. Theoretical Chemistry Accounts, 2000. 103(3-4): p. 353-360.

Chermette, H., Chemical reactivity indexes in density functional theory. Journal of Computational Chemistry, 1999. 20(1): p. 129-154.

Geerlings, P., F. De Proft, and W. Langenaeker, Conceptual density functional theory. Chemical reviews, 2003. 103(5): p. 1793-1874.

Gazquez, J.L., A. Cedillo, and A. Vela, Electrodonating and electroaccepting powers. The Journal of Physical Chemistry A, 2007. 111(10): p. 1966-1970.

Chattaraj, P.K., A. Chakraborty, and S. Giri, Net electrophilicity. The Journal of Physical Chemistry A, 2009. 113(37): p. 10068-10074.

Muralidharan, N., et al., Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 2020: p. 1-6.

Khaerunnisa, S., et al., Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Prepr. doi10, 2020. 20944: p. 1-14.


Download data is not yet available.


How to Cite
Amaku, F., Otuokere, I., Igwe, K. and Ikpeazu, O. 2020. Design of Potential SARS-CoV-2 Inhibitor. European Journal of Engineering Research and Science. 5, 9 (Sep. 2020), 1043-1048. DOI: