Optimization of Extraction Parameters of Polyphenols from Mango Seed Kernel through Response Surface Methodology


  •   Junior Franck Ekorong Akouan Anta

  •   Dorothée Marcelle Biloa

  •   K.S.M.S. Raghavarao


Phenolic compounds constitute an essential part of the human diet, and are of considerable interest due to their antioxidant properties. The traditional maceration method has been used for the extraction of polyphenols from mango seed kernel (Mangifera indica L.). Highlight the effects of different extraction parameters is useful to optimize the process, as well as to predict the extraction yield within the experimental domain with enough precision and confidence. The purpose of this work is to probe the influence of extraction time, extraction temperature and agitation speed on the extraction yield of phenolic compounds, and the total reducing power of the extract. The Surface Methodology (RSM), using the Doehlert design, have been applied. Optimal values of extraction yield and total reducing power was 36.99 mg Gallic acid equivalent/g and 61.08 mg Ascorbic Acid Equivalent/g respectively. The optimal conditions are 60 minutes of extraction time, 68.7°C extraction temperature and 424 rpm for agitation speed. Under optimized conditions the experimental values well agreed with the values predicted by the model equations proposed.

Keywords: Mango Seed Kernels, Phenolic Compounds, Total Reducing Power, Extraction Optimization, Response Surface Methodology


N. K. Prasad, S. Divakar, G. R. Shivamurthy, S. M. Aradhya, ‘Isolation of a free radical-scavenging antioxidant from water spinach (Ipomea aquatica Forsk)’ J. Sci. Food Agric., 85, pp. 1461-1468, 2005.

R. C. Linderschmidt, A. F. Tryka, M E. Goad, H. P. Witschi, ‘The effects of dietary butylated hydroxytoluene on liver and colon tumor development in mice’, Toxicology, 38, pp 151–160, 1986.

D. Puravankara, V. Bohgra, R. S. Sharma, ‘Effect of antioxidant principles isolated from mango (Mangifera indica L.) seed kernels on oxidative stability of buffalo ghee (butter–fat)’, J. Sci. Food Agric., 80, pp 522–526, 2000.

A. J. Núñez-Sellés, ‘Antioxidant therapy: myth or reality?’, J. Braz. Chem. Soc., 16 (4), pp 699–710, 2005.

S. Kittiphoom, ‘Utilization of Mango seed’, Int. Food Res. J., 19 (4), pp 1325-1335, 2012.

S. S. Parmar, R.S. Sharma, ‘Effect of mango (Mangifera indica L.) seed kernels pre-extract on the oxidative stability of ghee’, Food Chem., 35, pp 99-107, 1990.

S. S. Arogba, ‘Mango (Mangifera indica) kernel: Chromatographic analysis of the tannin and stability of the associated polyphenol oxidase activity’, J. Food Comp. Anal., 13, pp 149-156, 1990.

F. Dahmoune, G. Spigno, K. Moussia, H. Remini, A. Cherbal, K. Madani, ‘Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction’, Ind. Crop. Prod., 61, pp 31–40, 2014.

A. Khoddami, M. A. Wilkes, T. H. Roberts, ‘Techniques for analysis of plant phenolic compounds’, Molecules, 18, pp 2328–2375, 2013.

C. Santos-Buelga, S. Gonzalez-Manzano, M. Dueñas, A. M. Gonzalez-Paramas, ‘Extraction and isolation of phenolic compounds’, Methods Mol. Biol., 864, pp 427–464, 2012.

P. D. Haaland, ‘Experimental Design in Biotechnology’, New York, Marcel Dekker, 1989.

G. E. P. Box, W. G. Hunter, and J. S Hunter, ‘Statistics for Experimenters: an introduction to design, data analysis, and model building’, New York, John Wiley; 1978.

R. H. Myers, D. C. Montgomery, ‘Response surface methodology, process and product optimization using designed experiments’, 2nd Ed. New York: John Wiley and Sons; 1995.

M. H. Canteri-Schemin, H. C. R. Fertonani, N. Waszczynskyj, G. Wosiacki, ‘Extraction of pectin from apple pomace’, Braz. Arch. Biol. Technol., 48 (2), pp 259-266, 2005.

L. A. L. Soares, G. G. Ortega, P. R. Petrovick, P. C Schmidt. ‘Optimization of Tablets Containing a High Dose of Spray-Dried Plant Extract: A Technical Note’, AAPS PharmSciTech, 6 (3), pp 368-371, 2005.

Desobgo Z.S.C., Nso E.J., Tenin D., Kayem G.J. Modelling and optimizing of mashing enzymes-effect on yield of filtspeed of unmalted sorghum by use of response surface methodology. Journal of the Institute of Brewing. 2010; 116: 62-69

H. P. S. Makkar, M. Blummel, N. K. Borowy, K. Becker, ‘Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods’, J. Sci. Food Agric., 61, pp 161–165, 1993.

J. F. A. A. Ekorong, P.-D. Mbougueng, E. Durand, B. Barea, P. Villeneuve, R. Ndjouenkeu, ‘Model development to enhance the solvent extraction of polyphenol from mango seed kernel’, Journal of biologically active products from nature, 8 (1), pp 51-63, 2018.

P. Prieto, M. Pineda, M. Aguilar, ‘Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to determination of vitamin E’, Anal. Biochem., 269, pp 337–341, 1999.

J. F. A. A. Ekorong, G. Zomegni, S. C. Z. Desobgo, R. Ndjouenkeu, ‘Optimization of drying parameters for mango seed kernels using central composite design’, Bioresources and Bioprocessing, 2, 8, 2015.

P. A. N. Kouteu, Y. Jiokap - Nono, C. Kapseu, ‘Pre-treatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process’, Renew. Energy, 97, pp 252-265, 2016.

B. S. Baboukani, M. Vossoughi, I. Alemzadeh, ‘Optimisation of dilute-acid pretreatment conditions for enhancement sugar recovery and enzymatic hydrolysis of wheat straw’, Biosystems engineering, 111, pp 166-174, 2012.

A. M. Joglekar, A. T. May, ‘Product excellence through design of experiments’, Cereal Food. World., 32, pp 857-868, 1987.

D. Bas, I. H. Boyac, ‘Modeling and optimizing I: Usability of response surface methodology’, J. Food Eng., 78, pp 836-845, 2007.

P. Dalgaard, L. V. Jorgensen, ‘Predicted and observed growth of Listeria monocytogenes in seafood challenge tests and in naturally contaminated cold-smoked salmon’, Int. J. Food Microbiol., 40, pp 105-115, 1998.

E. M. Silva, J. N. S. Souza, H. Rogez, J. F. Rees, Y. Larondelle, ‘Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region’, Food Chem., 101, pp 1012-1018, 2007.

N. Ruenroengklin, J. Zhong, X. Duan, B. Yang, J. Li, Y. Jiang, ‘Effects of various temperatures and pH values on the extraction yield of phenolics from Litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins’, Int. J. Mol. Sci., 9, 1333-1341, 2008.

C. Wu, L. Xu, J. C. Liu, X. Z. Huang, Y. M. Maimaiti, ‘Process optimization for total polyphenol extraction from the tree branch bark of Xinjiang black mulberry (Morus nigra L.) by response surface methodology’, Food Sci., 32, pp 104–107, 2011.

F. Benmeziane, R. Djamai, Y. Cadot, R. Seridi, ‘Optimization of extraction parameters of phenolic compounds from Algerian fresh table grapes (Vitis vinifera)’, Int. Food Res. J., 21, 3, pp 1061-1065, 2014.

D. Tagliazucchi, E. Verzelloni, D. Bertolini, A. Conte, ‘In vitro bio-accessibility and antioxidant activity of grape polyphenols’, Food Chem., 120, 2, pp 599-606, 2010.

C. H. Chan, R. Yusoff, G. C. Ngoh, F. W. Kung, ‘Microwave-assisted extractions of active ingredients from plants’, J. Chromatogr. A., 1218, pp 6213–6225, 2011.

X. Wang, Y. Wu, G. Chen, W. Yue, Q. Liang, Q. Wu, ‘Optimisation of ultrasound assisted extraction of phenolic compounds from Sparganii rhizoma with response surface methodology’, Ultrason. Sonochem., 20, pp 846–854, 2013.

M. T. Escribano-Bailon, C. Santos-Buelga, ‘Polyphenol extraction from foods’, In Methods in Polyphenol Analysis, Royal Society of Chemistry, London, ed. G. Santos-Buelga, C. Williamson, 2003. pp. 1–16.

V. Bharathi, J. Patterson, R. Rajendiran, ‘Optimization of Extraction of Phenolic Compounds from Avicennia marina (Forssk.) Vierh using Response Surface Methodology’, Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng., 5, 8, pp 483-487, 2011.

B. Abad-Garcia, L. A. Berrueta, D. M. L. Marquez, I. C. Ferrer, B. Gallo, F. Vicente, ‘Optimization and validation of methodology based on solvent extraction and liquid chromatography for the simultaneous determination of several polyphenolic families in fruit juices’, J. Chromatogr. A., 1154, 87-96, 2007.

P. Budrat, A. Shotipruk, ‘Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction’, Sep. Purif. Technol., 66, pp 125−129,2009.

C. Lopez-Alarcon, A. Aspée, E. Lissi, ‘Antioxidant reactivity ́evaluated by competitive kinetics: influence of the target molecule concentration’, Food Chem., 104, pp 1430−1435, 2007.

M. Hassas-Roudsari, P. R. Chang, R. B. Pegg, R. T. Tyler, ‘Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction’, Food Chem., 114, pp 717−726 2009.

J. R. Vergara-Salinas, J. Perez-Jiménez, J. L. Torres, E. Agosin, J. R. Perez-Correa, ‘Effects of Temperature and Time on Polyphenolic Content and Antioxidant Activity in the Pressurized Hot Water Extraction of Deodorized Thyme (Thymus vulgaris)’, J. Agric. Food Chem., 60, pp 10920−10929, 2012.

Y. Wang, C.-T. Ho, ‘Polyphenolic Chemistry of Tea and Coffee: A Century of Progress’, J. Agric. Food Chem., 57, pp 8109–8114, 2009.

N. Nićiforović, H. Abramovich, ‘Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity’, Comprehensive Reviews in Food Science and Food Safety, 13, 1, pp 34-51, 2014.


Download data is not yet available.


How to Cite
Akouan Anta, J.F., Biloa, D.M. and Raghavarao, K. 2020. Optimization of Extraction Parameters of Polyphenols from Mango Seed Kernel through Response Surface Methodology. European Journal of Engineering and Technology Research. 5, 8 (Aug. 2020), 877-883. DOI:https://doi.org/10.24018/ejers.2020.5.8.2069.