Modelling and Optimization of Ultrasound Assisted Extraction of Polyphenols Using Response Surface Methodology

##plugins.themes.bootstrap3.article.main##

  •   Junior Franck Ekorong Akouan Anta

  •   Dorothée Marcelle Biloa

  •   Bruno Fabrice Siewe

  •   Raghavarao K. S. M. S.

Abstract

Mango seed kernels are by-products of the consumption and transformation of mango fruits (Mangifera indica L.). Many ways of valorisation have been proposed, and among them, their phenolic compounds extraction. To increase the extraction yield, ultrasound-assisted extraction was modelled and optimized. The 4 factors Central Composite design associated with the Response Surface Methodology (RSM) were used to achieve that goal. The effect of extraction time, temperature, stirring rate and the Ultrasound Amplitude, on the total phenolic compound extraction yield and the total reducing power of the extract, were studied and modelled. The modelling allows us to do a multi-response optimization to identify the best-operating conditions to achieve at the same time the highest extraction yield and antioxidant capacity. The optimal operating conditions achieved were 41.82 min of extraction time, 54.75⁰C as extraction time, under 266.67 rpm as stirring rate, and 100% ultrasound amplitude. With an expected extraction yield of 71.35 mg GA/g, and 123.058 mg AA/g of total reducing power. 2 extraction cycles, under these conditions, are enough to extract a maximum of the phenolic content, under the described conditions.


Keywords: Ultrasound-Assisted Extraction, Mango Seed Kernels, Phenolic Compounds, Total Reducing Power, Extraction Optimization, Response Surface Methodology

References

S. Rodrigues, G. A. S. Pinto, A. N. Fernandes Fabiano, ‘optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology’, Ultrason. Sonochem., 15, PP 95–100, 2008.

I. Ignat, I. Volf, V. I. Popa, ‘A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables’, Food Chem., 126, pp 1821–1835, 2011.

S. S. Handa, S. Preet, S. Khanuja, G. Longo, D. D. Rakesh, ‘Extraction technologies for medicinal and aromatic plants’, United Nations Industrial Development Organization and The International Centre for Science and High Technology, Trieste, 2008.

M. Vinatoru, ‘An overview of the ultrasonically assisted extraction of bioactive principles from herbs’, Ultrason. Sonochem., 8, pp 303–313, 2001.

J. Luque-Garcı́a and M. Luque De Castro, ‘Ultrasound-Assisted Soxhlet Extraction: An Expeditive Approach for Solid Sample Treatment’, J. Chromatogr. A, 1034(1-2), pp 237–242, 2004.

Y. Q. Ma, X. Q. Ye, Z. X. Fang, J. C. Chen, G. H. Xu, D. H. Liu, ‘Phenolic Compounds and Antioxidant Activity of Extracts from Ultrasonic Treatment of Satsuma Mandarin (Citrus Unshiu Marc.) Peels, J. Agric. Food Chem., 56, pp 5682–5690, 2008.

A. E. Ince, S. Sahin, G. Sumnu, ‘Comparison of Microwave and Ultrasound-Assisted Extraction Techniques for Leaching of Phenolic Compounds from Nettle’, J. Food Sci. Tech. 51. pp 2776–2782, 2014.

M. D. Esclapez, J. V. Garcıa-Pérez, A. Mulet, J. A. Cárcel, ‘Ultrasound-Assisted Extraction of Natural Products’, Food Eng. Rev., 3, pp 108–120, 2011.

M. D. Vetal, V. G. Lade, and V. K. Rathod, Extraction of Ursolic Acid from Ocimum Sanctum by Ultrasound: Process Intensification and Kinetic Studies’. Chemical Engineering and Processing: Process Intensification, 69, pp 24–30, 2013.

D. S. Bashi, S. A. Mortazavi, K. Rezaei, A. Rajaei, M. M. Karimkhani, ‘Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Yarrow (Achillea beibrestinii) By Response Surface Methodology’, Food Sci. Biotechnol., 21 (4), pp 1005–1011, 2012.

Y. Tao, D. Wu, Q. A. Zhang, D. W. Sun, ‘Ultrasound-Assisted Extraction of Phenolics from Wine Lees: Modeling, Optimization and Stability of Extracts During Storage’, Ultrason. Sonochem., 21(2), pp 706–715, 2014.

L. G. D’alessandro, K. Dimitrov, P. Vauchel, I. Nikov, ‘Kinetics of Ultrasound-Assisted Extraction of Anthocyanins from Aronia melanocarpa (Black Chokeberry) Wastes’, Chem. Eng. Res. Des., 92 pp 1818–1826, 2014.

R. A. Carciochi, G. D. Manrique, K. Dimitrov, ‘Optimization of Antioxidant Phenolic Compounds Extraction from Quinoa (Chenopodium quinoa) Seeds’, J. Food Sci. Tech., 52, pp 4396–4404, 2015.

M. Ramić, S. Vidović, Z. Zeković, J. Vladić, A. Cvejin, B. Pavlić, ‘Modeling and Optimization of Ultrasound-Assisted Extraction of Polyphenolic Compounds from Aronia melanocarpa by-products from filter-Tea factory’, Ultrason. Sonochem., 23, 360–368, 2015.

M. Masibo and Q. He, ‘Major Mango Polyphenols and Their Potential Significance to Human Health’. Compr. Rev. Food Sci. Food Saf., 7(4), pp 309–319, 2008.

N. Yoswathana and M. N. Eshiaghi, ‘Subcritical Water Extraction of Phenolic Compounds from Mango Seed Kernel Using Response Surface Methodology’, Asian J. Chem., 25(3), pp 1741-1744, 2013.

C. Torres-León, R. Rojas, L. Serna-Cock, R. Belmares-Cerda, and C. N. Aguilar, Extraction of Antioxidants from Mango Seed Kernel: Optimization Assisted by Microwave. Food and Bioproducts Processing, 105, pp 188–196, 2017.

K. J. A. Lim, A. A. Cabajar, C. F. Y. Lobarbio, E. B. Taboada, and D. J. Lacks, ‘Extraction of Bioactive Compounds from Mango (Mangifera Indica L. Var. Carabao) Seed Kernel with Ethanol–Water binary solvent systems’, J. Food Sci. Technol., 2019.

K. M. Hammi, A. Jdey, C. Abdelly, H. Majdoub, R. Ksouri, ‘Optimization of Ultrasound-Assisted Extraction of Antioxidant Compounds from Tunisian Zizyphus Lotus Fruits Using Response Surface Methodology’, Food Chem., 184, pp 80–89, 2015.

Q. V. Vuong, D. T. Thanh, D. J. Bhuyan, C. D. Goldsmith, E. Sadeqzadeh, C. J. Scarlett, M. C Bowyer, ‘Optimization of Ultrasound-Assisted Extraction Conditions for Euphol from the Medicinal Plant, Euphorbia tirucalli, Using Response Surface Methodology’, Ind. Crop. Prod., 63, pp 197–202, 2015.

J. F. Ekorong Akouan Anta, P.-D. Mbougueng, E. Durand, B. Baréa, P. Villeneuve, R. Ndjouenkeu, ‘Model development to enhance the solvent extraction of Polyphenols from Mango Seed Kernel’, Journal of Biologically Active Products from Nature, 8(1), pp 51–63, 2018.

D. Mathieu, D. Feneuille, and R. Phan-Tan-Luu, Méthodologie De La Recherche Expérimentale : Etude Des Surfaces De Réponse. Iut De L’université D'aix-Marseille. 1977.

Z. S. C. Desobgo, E. J. Nso, D. Tenin, and G. J. Kayem, ‘Modelling and Optimizing of Mashing Enzymes-Effect on Yield of Filtrate of Unmalted Sorghum by Use of Response Surface Methodology’, Journal of The Institute of Brewing, 116, pp 62-69, 2010.

H. P. S. Makkar, M. Blummel, N. K. Borowy, and K. Becker ‘Gravimetric Determination of Tannins and Their Correlations with Chemical and Protein Precipitation Methods’, J. Sci. Food Agric., 61, pp 161–165, 1993.

P. Prieto, M. Pineda, and M. Aguilar, ‘Spectrophotometric Quantitation of Antioxidant Capacity Through the Formation of Phosphomolybdenum Complex: Specific Application to Determination of Vitamin E’, Anal. Biochem., 269, pp 337–341, 1999.

B. S. Baboukani, M. Vossoughi, I. Alemzadeh, ‘Optimisation of Dilute-Acid Pretreatment Conditions for Enhancement Sugar Recovery and Enzymatic Hydrolysis of Wheat Straw’, Biosyst. Eng., 111(2), pp 166-174, 2012.

A. M. Joglekar and A. T. May, ‘Product Excellence Through Design of Experiments’, Cereal Food World, 32, pp 857-868, 1987.

D. Baş and I. H. Boyaci, ‘Modeling and Optimizing I: Usability of Response Surface Methodology’, J. Food Eng., Vol. 78, pp 836-845, 2007.

P. Dalgaard, L. V. Jorgensen, ‘Predicted and Observed Growth of Listeria Monocytogenes in Seafood: Challenge Tests and In Naturally Contaminated Cold-Smoked Salmon’, Int. J. Food Microbiol., 40, pp 105– 115, 1998.

M. B. Hossain, N. P. Brunton, A. Patras, B. Tiwari, C. P. O’donnell, A. B. Martin-Diana, and C. Barry-Ryan, ‘Optimization of Ultrasound-Assisted Extraction of Antioxidant Compounds from Marjoram (Origanum majorana L.) Using Response Surface Methodology’, Ultrasonics Sonochemistry, 19(3), pp 582–590, 2012.

I. Paleologou, A. Vasiliou, S. Grigorakis, and D. P. Makris, ‘Optimisation of a Green Ultrasound-Assisted Extraction Process for Potato Peel (Solanum tuberosum) Polyphenols Using Bio-Solvents and Response Surface Methodology’, Biomass Conversion and Biorefinery, Vol 6, pp 289–299, 2016.

K. Ghafoor, Y. H. Choi, J. Y. Jeon, I. H. Jo, ‘Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants and Anthocyanins from Grape (Vitis vinifera) Seeds’, J. Agric. Food Chem., 57 (11), pp 4988– 4994, 2009.

M. Bilgin, S. Sahin, M. U. Dramur, and L. M. Sevgili, ‘Obtaining Scarlet Sage (Salvia coccinea) Extract Through Homogenizer and Ultrasound-Assisted Extraction Methods’, Chemical Engineering Communications, 200(9), pp 1197–1209, 2013.

L. Wang, D. Li, C. Bao, J. You, Z. Wang, Y. Shi, and H. Zhang, ‘Ultrasonic extraction and separation of anthraquinones from Rheum palmatum L.’, Ultrasonics Sonochemistry, 15(5), pp 738–746, 2008.

T. Jerman, P. Trebše, and B. M. Vodopivec, ‘Ultrasound-Assisted Solid-Liquid Extraction (USLE) Of Olive Fruit (Olea europaea) Phenolic Compounds’, Food Chemistry, 123(1), pp 175–182, 2010.

L. V. Silva, D. L. Nelson, M. F. B. Drummond, L. Dufossé, M. B. A. Glória, ‘Comparison of Hydrodistillation Methods for the Deodorization of Turmeric’, Food Research International, 38 (8–9), pp 1087–1096, 2005.

G. Spigno and D. M. De Faveri, ‘Antioxidants from Grape Stalks and Marc: Influence of Extraction Procedure on Yield, Purity and Antioxidant Power of the Extracts’, J. Food Eng., 78, pp 793–801, 2007.

A. Telli, N. Mahboub, S. Boudjeneh, O. E. K. Siboukeur, and F. Moulti-Mati, ‘Optimisation Des Conditions d’extraction des Polyphenols De Dattes Lyophilisees (Phoenix dactylifera L) Variete Ghars’, Annales Des Sciences et Technologie, Vol. 2, 2, 2010.

Y. Chavan, and R. S. Singhal, Ultrasound-assisted extraction (UAE) of bioactives from areca nut (Areca catechu L.) and optimization study using response surface methodology’, Innov. Food Sci. Emerg. Tech., 17, pp 106–113, 2013.

M. Nazck and F. Shahidi, ‘Extraction and Analysis of Phenolics in Food; J. Chromatogr. A, 1054, pp 95-111, 2004.

M. Nazck and F. Shahidi, ‘Phenolics in Cereals, Fruits and Vegetables: Occurrence, Extraction and Analysis’, J. Pharmaceut. Biomed. Anal., 41, pp 1523-1542, 2006.

B. Drużyńska, A. Stepniewska and R. Wolosiak, ‘The Influence of Time and Type of Solvent on Efficiency of The Extraction of Polyphenols from Green Tea and Antioxidant Properties obtained Extracts’, Acta. Sci. Pol. Technol. Aliment., 6, pp 27-36, 2007.

T. Yue, D. Shao, Y. Yuan, Z. Wang, and C. Qiang, ‘Ultrasound-Assisted Extraction, Hplc Analysis, And Antioxidant Activity of Polyphenols from Unripe Apple’, J. Sep. Sci., 35(16), 2138–2145, 2012.

Z. Wissam, B. B. Ghada, A. Wassim, and K. Warid, ‘Effective Extraction of Polyphenols and Proanthocyanidins from Pomegranate’s Peel’, International Journal of Pharmacy and Pharmaceutical Sciences, 4(3), pp 675 – 682, 2012.

M. B. Hossain, C. Barry-Ryan, A. B. Martin-Diana, and N. P. Brunton, ‘Optimisation of Accelerated Solvent Extraction of Antioxidant Compounds from Rosemary (Rosmarinus officinalis L.), Marjoram (Origanum majorana L.) And Oregano (Origanum vulgare L.) Using Response Surface Methodology’, Food Chem., 126(1), pp 339–346, 2011.

M. C. Herrera, M. D. Luque De Castro, ‘Ultrasound-Assisted Extraction of Phenolic Compounds from Strawberries Prior to Liquid Chromatographic Separation and Photodiode Array Ultraviolet Detection’, J. Chromatogr. A, 1100 (1), pp 1–7, 2005.

M. Pinelo, M. Rubilar, M. Jerez, J. Sineiro, and M. J. Nunez, ‘Effect of Solvent, Temperature, and Solvent-to-solid Ratio on The Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace’, J. Agric. Food Chem., 53, pp 2111-2117, 2005.

S. Hemwimol, P. Pavasant, and A. Shotipruk, ‘Ultrasound-Assisted Extraction of Anthraquinones from roots of Morinda citrifolia’, Ultrason. Sonochem., 13(6), pp 543–548, 2006.

S. Boonkird, C. Phisalaphong, and M. Phisalaphong, ‘Ultrasound-Assisted Extraction of Capsaicinoids from Capsicum frutescens on A Lab- and Pilot-Plant Scale’, Ultrason. Sonochem., 15(6), pp 1075–1079, 2008.

K. N. Prasad, B. Yang, M. Zhao, N. Ruenroengklin, and Y. Jiang, ‘Application of Ultrasonication or High-Pressure Extraction of Flavonoids from Litchi Fruit Pericarp’, J. Food Process Eng., 32(6), pp 828–843, 2009.

L. G. D’alessandro, K. Kriaa, I. Nikov, and K. Dimitrov, ‘Ultrasound-Assisted Extraction of Polyphenols from Black Chokeberry’, Sep. Pur. Technol., 93, pp 42–47, 2012.

B. Abad-Garcia, L. A. Berrueta, D. M. L. Marquez, I. C. Ferrer, B. Gallo, and F. Vicente, ‘Optimization and Validation of Methodology Based on Solvent Extraction and Liquid Chromatography for the Simultaneous Determination of Several Polyphenolic Families in Fruit Juices’, J. Chromatogr. A, 1154, pp 87-96, 2007.

J. A. Manthey, and K. Grohmann, ‘Phenols in Citrus Peel By-products. Concentrations of Hydroxycinnamates and Polymethoxylated Flavones in Citrus Peel Molasses’, J. Agric. Food Chem., 49(7), pp 3268–3273, 2001.

Y. Yilmaz, and R. T. Toledo, ‘Oxygen Radical Absorbance Capacities of Grape/Wine Industry By-products and Effect of Solvent Type on Extraction of Grape Seed Polyphenols’, J. Food Compos. Anal., 19(1), pp 41–48, 2006.

D. Tagliazucchi, E. Verzelloni, D. Bertolini, A. Conte, ‘In Vitro Bio-Accessibility and Antioxidant Activity of Grape Polyphenols’, Food Chem., 120 (2), pp 599-606, 2010.

C. H. Chan, R. Yusoff, G. C. Ngoh, F. W. L. Kung, ‘Microwave-Assisted Extractions of Active Ingredients from Plants, J. Chromatogr. A, 1218 (37), pp 6213-6225, 2011.

M. R. González-Centeno, M. Jourdes, A. Femenia, S. Simal, C. Rosselló, P.-L. Teissedre, ‘Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking By-products from 10 Different Grape Varieties (Vitis vinifera L.)’, J. Agric. Food Chem., 60, pp 11850–11858, 2012.

Lv Lingzhu, Wei Lu, Chen Dongyan, Liu Jingbo, Lin Songyi, Ye Haiqing, Yuan Yuan, ‘Optimization of ultrasound-assisted extraction of polyphenols from maize filaments by response surface methodology and its identification’, Journal of Applied Botany and Food Quality, 88, pp 152 – 163, 2015.

A. C. Pedro, D. Granato, and N. D. Rosso, ‘Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability’, Food Chem., 191, pp 12–20, 2016.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Ekorong Akouan Anta, J.F., Biloa, D.M., Siewe, B.F. and K. S. M. S., R. 2020. Modelling and Optimization of Ultrasound Assisted Extraction of Polyphenols Using Response Surface Methodology. European Journal of Engineering Research and Science. 5, 9 (Sep. 2020), 1004-1012. DOI:https://doi.org/10.24018/ejers.2020.5.9.2115.