The Contribution to the Development of a Two-Dimensional Asymptotic Theory of the Three-Point Bending Behaviour of Multi-Layered Beams: Applications to Orthotropic Phase Sandwich Beams

##plugins.themes.bootstrap3.article.main##

  •   A. D. Pagui

  •   A. E. Foudjet

  •   J. S. T. Mabekou

  •   T. R. S. N. Ekoume

  •   P. K. Talla

Abstract

The objective of this work is to present a methodology for analyzing the behavior in bending of the structure of sandwich beams base on the second order of asymptotic method. This work is in continuation with the work of Talla [1]. This work includes the knowledge of all the physical elastic constant of the sandwich beams. This result confirms the fact that the second order of asymptotic method doesn’t bring a significative change in the behavior of the solution until a certain point. The curves have been obtained by the software named python. This result was predictable because the asymptotic methods deal with small variation due to the presence of the epsilon parameter, which is very small.


Keywords: Asymptotic method, Composite material, Python, Sandwich beams

References

P. K. Talla, “contribution à l’élaboration d’une théorie asymptotique a une dimension du comportement en flexion des poutres multicouches a phases orthotropes”, thèse de Doctorat 3è cycle, Université de Dschang, Faculté des Sciences, Département de Physique, Cameroun, 159p, 2007.

Z. Peicheng, “An Introduction to Matched Asymptotic Expansions (A Draft), Basque Center for Applied Mathematics and Iker Basque Foundation for Science”, Nov., 116p, 2009.

I. Argatov, G. Mishuris, “ASYMPTOTIC METHODS IN MECHANICS”, Aberystwyth University,122 p.

vVyshchyk, L.A. Lyusternik, “Regular singularization and a boundary layer for linear differential equations with a small parameter”, Uspekhi mat. nauk, 1957, V.12, N 15, 3–122, 2011.

H. Haiying, G. A. Kardomateas, “Buckling and Initial Postbuckling Behavior of Sandwich Beams Including Transverse Shear”, Vol. 40, No. 11, November 2002.

J. K. Mvogo, “Regroupement mécanique par méthode vibratoire des bois du bassin du Congo”, thèse de doctorat (Ph. D) en Sciences de l’Ingénieur, option: Génie civil-bois, Université de Yaoundé 1, Ecole Nationale Supérieure Polytechnique, Département de Génie-Civil, Cameroun. 165p, 20 septembre 2008.

P. G. Ciarlet, Université Pierre et Marie Curie, “Mathematical Elasticity”, volume II: Theory of plates, ELSEVIERAMSTERDAM-LAUSANNE-NEW YORK-OXFORD-SHANNON-TOKYO, 1997.

M. Mentangmo, “Modélisation des constantes élastiques des bois feuillus par des fonctions d'approximation exponentielles”, Mémoire de fin d'Etudes d'Ingénieur de Génie Civil à l'Ecole Polytechnique de Yaoundé au Cameroun, 72p, 1987.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Pagui, A.D., Foudjet, A.E., Mabekou, J.S.T., Ekoume, T.R.S.N. and Talla, P.K. 2020. The Contribution to the Development of a Two-Dimensional Asymptotic Theory of the Three-Point Bending Behaviour of Multi-Layered Beams: Applications to Orthotropic Phase Sandwich Beams. European Journal of Engineering Research and Science. 5, 10 (Oct. 2020), 1191-1198. DOI:https://doi.org/10.24018/ejers.2020.5.10.2168.