4D Printing and Characterization of Shape Memory Polymer (SMP) Based Smart Gripper


  •   Francis Irungu Maina

  •   Nahashon Osinde

  •   Japheth Ka’pesha Odira

  •   Patrick Kariuki Wanjiru

  •   Margaret Wanjiku Mwangi


Shape Memory Polymer (SMP) is stimuli-responsive material with the ability to recover the original shape from a deformation upon triggering by an appropriate stimulus like heat, light, and electricity. The shape recovery properties can be harnessed through 4D printing of self-recoverable functional structures and made usable in fields like medicine and robotics. To investigate the recovery properties, best printing parameters and optimal sizes, 4D reconfigurable gripper designed in CAD was printed in Ultimaker 2 Printer. Different stencils were made in varying printing parameters of temperature, infill, speed and time. Analysis for the stencils proved best print quality at a temperature of 195 °C and nozzle retract speed of 40mm/s. Shape recovery characterization was done on MATLAB. A printing temperature of 203 °C, infill density of 38% and printing speed of 40 mm/s gave the gripper with the best print quality. Characterization of the varying performances of the four grippers was attributed to the different infill percentages. The lower the infill, the higher the recovery rate due to the low stiffness of the gripper. The best recovery rate of 96.93% was associated with an optimal printing temperature of 203 °C.

Keywords: 3D printing, 4D printing, Shape Memory Polymer, Smart materials


Wagermaier, W., Kratz, K., Heuchel, M., & Lendlein, A. (2009). Characterization methods for shape-memory polymers. In Shape-memory polymers (pp. 97-145). Springer, Berlin, Heidelberg.

Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by four-dimension printing. Applied Physics Letters, 103(13), 131901.

Liu, Y., Shaw, B., Dickey, M. D., & Genzer, J. (2017). Sequential self-folding of polymer sheets. Science Advances, 3(3), e1602417.

Liu, Y., Zhang, W., Zhang, F., Lan, X., Leng, J., Liu, S., & Chou, T. W. (2018). Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading. Composites Part B: Engineering, 153, 233-242.

Zhang, Q., Yan, D., Zhang, K., & Hu, G. (2015). Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Scientific reports, 5, 8936.

Tibbits, S., McKnelly, C., Olguin, C., Dikovsky, D., & Hirsch, S. (2014). 4D Printing and universal transformation.

Pei, E., & Loh, G. H. (2018). Technological considerations for 4D printing: an overview. Progress in Additive Manufacturing, 3(1-2), 95-107.

Dadbakhsh, S., Speirs, M., Kruth, J. P., Schrooten, J., Luyten, J., & Van Humbeeck, J. (2014). Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Advanced Engineering Materials, 16(9), 1140-1146.

Hager, M. D., Bode, S., Weber, C., & Schubert, U. S. (2015). Shape memory polymers: Past, present and future developments. Progress in Polymer Science, 49, 3-33.

Voit, W., Ware, T., Dasari, R. R., Smith, P., Danz, L., Simon, D., & Gall, K. (2010). High‐strain shape‐memory polymers. Advanced functional materials, 20(1), 162-171.

Treloar, L. R. G. (1975). The physics of rubber elasticity. Oxford University Press, USA.

Wu, W., & You, Z. (2011). A solution for folding rigid tall shopping bags. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2133), 2561-2574.

Safranski, D. L., & Gall, K. (2008). Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth) acrylate shape memory polymer networks. Polymer, 49(20), 4446-4455.

Choi, J. W., Kim, H. C., & Wicker, R. (2011). Multi-material stereolithography. Journal of Materials Processing Technology, 211(3), 318-328.

Anand, L., Ames, N. M., Srivastava, V., & Chester, S. A. (2009). A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation. International Journal of Plasticity, 25(8), 1474-1494.

Ames, N. M., Srivastava, V., Chester, S. A., & Anand, L. (2009). A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications. International Journal of Plasticity, 25(8), 1495-1539.

Hetnarski, R. B. (Ed.). (2014). Encyclopedia of thermal stresses. Springer Netherlands.

Malachowski, K., Breger, J., Kwag, H. R., Wang, M. O., Fisher, J. P., Selaru, F. M., & Gracias, D. H. (2014). Stimuli‐responsive theragrippers for chemomechanical controlled release. Angewandte Chemie International Edition, 53(31), 8045-8049.

Miao, S., Cui, H., Nowicki, M., Xia, L., Zhou, X., Lee, S. J., ... & Zhang, L. G. (2018). Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering. Advanced biosystems, 2(9), 1800101.

Shian, S., Bertoldi, K., & Clarke, D. R. (2015). Dielectric elastomer based “grippers” for soft robotics. Advanced Materials, 27(43), 6814-6819.

Daerden, F., & Lefeber, D. (2002). Pneumatic artificial muscles: actuators for robotics and automation. European journal of mechanical and environmental engineering, 47(1), 11-21.

Yang, Y., Chen, Y., Wei, Y., & Li, Y. (2016). 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology, 84(9-12), 2079-2095.

Koch, L., Deiwick, A., & Chichkov, B. (2018). Laser-Based Cell Printing, in 3D Printing and Biofabrication.

Choong, Y. Y. C., Maleksaeedi, S., Eng, H., Wei, J., & Su, P. C. (2017). 4D printing of high performance shape memory polymers using stereolithography. Materials & Design, 126, 219-225.

Tobushi, H., Okumura, K., Hayashi, S., & Ito, N. (2001). Thermomechanical constitutive model of shape memory polymer. Mechanics of materials, 33(10), 545-554.

Hu, J., Zhu, Y., Huang, H., & Lu, J. (2012). Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications. Progress in Polymer Science, 37(12), 1720-1763.

Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., & Dunn, M. L. (2016). Multimaterial 4D printing with tailorable shape memory polymers. Scientific reports, 6, 31110.

Yang, Y., Chen, Y., Wei, Y., & Li, Y. (2016). 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology, 84(9-12), 2079-2095.

Tani, J., Takagi, T., & Qiu, J. (1998). Intelligent material systems: application of functional materials.

Ariffin, M. K. A., Sukindar, N. A., Baharudin, B. T. H. T., Jaafar, C. N. A., & Ismail, M. I. S. (2018, January). Slicer Method Comparison Using Open-source 3D Printer. In IOP Conference Series: Earth and Environmental Science (Vol. 114, p. 012018).

Tobushi, H., Hara, H., Yamada, E., & Hayashi, S. (1996). Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Materials and Structures, 5(4), 483.

Couchman, P. R. (1978). Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules, 11(6), 1156-1161.Development and Research, ed. Chen Dan, pp. 359-366, vol. 26, Singapore, 2011.


Download data is not yet available.


How to Cite
Maina, F.I., Osinde, N., Odira, J.K., Wanjiru, P.K. and Mwangi, M.W. 2020. 4D Printing and Characterization of Shape Memory Polymer (SMP) Based Smart Gripper. European Journal of Engineering Research and Science. 5, 10 (Oct. 2020), 1204-1211. DOI:https://doi.org/10.24018/ejers.2020.5.10.2174.