Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base

##plugins.themes.bootstrap3.article.main##

  •   Laura Landa-Ruiz

  •   Sabino Márquez-Montero

  •   Griselda Santiago-Hurtado

  •   Victor Moreno-Landeros

  •   José Manuel Mendoza-Rangel

  •   Miguel Angel Baltazar-Zamora

Abstract

In the present investigation 8 soil samples were studied, with additions of 5 and 7% of addition of sugar Cane Bagasse Ash (SCBA), Portland Cement (PC) and combinations of these in different proportions. The characterization and classification of the study soil was carried out, determining the Natural Humidity, Granulometric Curve, Consistency Limits, soil classification according to the Unified Soil Classification System (USCS) and AASHTO compaction. The results show that the use of the SCBA is viable to significantly improve the physical properties of the granular soil type Hydraulic Base, The partial substitution of SCBA for PC according to the results can be considered that it would contribute to more durable and therefore economical roads. In addition to contributing to the reduction in cement consumption, which would imply a decrease in the release of CO2 into the atmosphere due to the manufacture of Portland Cement.


Keywords: SCBA; Hydraulic Base; Compaction Properties

References

Maria de Lourdes Olivo, Alejandra Soto-Olivo. (2010). Comportamiento de los gases de efecto invernadero y las temperaturas atmosféricas con sus escenarios de incremento potencial. UCT, Puerto Ordaz, 14:57, pp. 221-230.

Informe estadístico 2013. (2013). Federación Interamericana del cemento. FICEM.

A. Landa-Gómez et.al., (2018). Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c= 0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. ECS Transactions. 84, 217-227.

M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. (2011). Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 33, pp. 644-652.

Miguel Angel Baltazar-Zamora, Sabino Márquez-Montero, Laura Landa-Ruiz, René Croche, Oscar López-Yza. (2020). Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. European Journal of Engineering Research and Science, 5:1, pp. 91-95.

O. Troconis de Rincón et. al., (2016). Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion, 72:6, pp. 824-833.

G. Santiago-Hurtado et. al. (2012). Electrochemical Behavior of Reinforced Concrete and Its Relation with the Environment of Xalapa, Veracruz. International Journal of Electrochemical Science, 7:10, pp. 9825-9834.

V. Volpi-León, L.D. López-Léon, J. Hernández-Ávila, M.A. Baltazar-Zamora, F.J. Olguín-Coca, A.L. López-León. (2017). Corrosion study in reinforced concrete made with mine waste as mineral additive. International Journal of Electrochemical Science, 12:1, pp. 22-31.

D.M. Bastidas, M. Criado, S. Fajardo, A. La Iglesia, J.M. Bastidas. (2015). Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides. Cement and Concrete Composites, 61, pp. 1-6.

M.A. Baltazar-Zamora, G. Santiago-Hurtado, C. Gaona-Tiburcio et. al. (2012). Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science, 7:1, pp. 588-600.

G. Santiago-Hurtado et. al. (2016). Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science, 11:6, pp. 4850-4864.

M.A. Baltazar-Zamora, G. Santiago-Hurtado, V.M. Moreno L, R. Croche B, M. de la Garza, F. Estupiñan L, P. Zambrano R., C. Gaona-Tiburcio. (2016). Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science, 11:12, pp. 10306-10319.

M.A. Baltazar-Zamora et. al. (2012). Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 7:4, pp. 2997-3007.

Miguel Angel Baltazar-Zamora, José Manuel Mendoza-Rangel, René Croche, Citlalli Gaona-Tiburcio, Cindy Hernández, Luis López, Francisco Olguín, Facundo Almeraya-Calderón. (2019). Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials, 6, pp. 1-12.

G. Santiago-Hurtado et. al. (2016). Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science, 11:4, pp. 2994-3006.

Miguel Angel Baltazar-Zamora, Laura Landa-Ruiz, Yazmin Rivera, René Croche. (2020). Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. European Journal of Engineering Research and Science, 5:3, pp. 259-263.

G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L., P. Zambrano Robledo, C. Gaona-Tiburcio. (2013). Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science, 8:6, pp. 8490-8501.

M.L. Berndt. (2009). Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and Building Materials, 23:7, pp. 2606–2613.

K. Shi-Cong, P. Chi-Sun. (2013). Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cement and Concrete Composites, 37, pp. 12-19.

M.A. Baltazar-Zamora, D.M. Bastidas, G. Santiago-Hurtado, J.M. Mendoza-Rangel, C. Gaona-Tiburcio, J.M. Bastidas, F. Almeraya-Calderón. (2019). Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel), 12:23, pp. 1-13.

M.K. Yashwanth, B.G. Naresh Kumar, D.S. Sandeep Kumar. (2019). Potential of Bagasse Ash as Alternative Cementitious Material in Recycled Aggregate Concrete. International Journal of Innovative Technology and Exploring Engineering, 8:11, pp. 271-275.

Laura Landa-Ruiz, Hilda Ariza-Figueroa, Griselda Santiago-Hurtado, Victor Moreno-Landeros, Raul López Meraz, Rafael Villegas-Apaez, Sabino Márquez-Montero, René Croche, Miguel Angel Baltazar-Zamora. (2020). Evaluation of the Behavior of The Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. European Journal of Engineering Research and Science, 5:11, pp. 1353-1356.

A. Landa-Gómez et.al., (2018). Corrosion Behavior 304 and 316 Stainless Steel as Reinforcement in Sustainable Concrete Based on Sugar Cane Bagasse Ash Exposed to Na2SO4. ECS Transactions. 84, pp. 179-188.

Miguel Angel Baltazar-Zamora, Hilda Ariza-Figueroa, Laura Landa-Ruiz, and René Croche. (2020). Electrochemical Evaluation of AISI 304 SS and Galvanized Steel in Ternary Ecological Concrete based on Sugar Cane Bagasse Ash and Silica Fume (SCBA-SF) exposed to Na2SO4. European Journal of Engineering Research and Science, 5:3, pp. 353-357.

Hilda A. Ariza-Figueroa et. al. (2020). Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials (Basel), 13:10, pp. 1-16.

Abigail Landa-Sánchez et. al. (2020). Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials (Basel), 13:19, pp. 1-22.

NMX-C-414-ONNCCE 2014: Cementantes Hidráulicos. ONNCCE, S.C.; Mexico 2014.

NMX-C-416 ONNCCE-2003- Muestreo de estructuras terreas y métodos de prueba. ONNCCE S.C., México, (2003).

B.M. Das. Principio de Ingeniería de Cimentaciones. pp. 68-71. Ed. Thomson, México, (2006).

M.MMP.1.04/03 Métodos de muestreo y prueba de materiales. Suelos y materiales para terracerías. Contenido de Agua. S.C.T.,México, (2004).

Jofre, C., Kraemer, C., Sampedro, A., Lopez Bachiller, A., Atienza, M., Diaz, M., et. al. (2008). Manual de estabilización de suelos con cemento o cal. Madrid: Instituto Español del cemento y sus aplicaciones.

N. CMT.4.02-002/11. Materiales para pavimentos. Materiales para Subbases y Bases. Materiales para Bases Hidráulicas. S.C.T., México, (2004).

ASTM C-618–19. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International, West Conshohocken, PA, 2019, www.astm.org.

Elisabeth Arif, Malcolm W. Clarka, Neal Lake. (2017). Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete. Construction and Building Materials, 151, pp. 692-703.

O. Ojeda-Farías, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. (2018). Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, 8:2, pp. 194-208.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Landa-Ruiz, L., Márquez-Montero, S., Santiago-Hurtado, G., Moreno-Landeros, V., Mendoza-Rangel, J.M. and Baltazar-Zamora, M.A. 2021. Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. European Journal of Engineering and Technology Research. 6, 1 (Jan. 2021), 76-79. DOI:https://doi.org/10.24018/ejers.2021.6.1.2335.

Most read articles by the same author(s)